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Abstract

This paper investigates the theoretical and empirical performance of Fisher-Pitman-type
permutation tests for assessing the equality of unknown Poisson mixture distributions. Building
on nonparametric maximum likelihood estimators (NPMLEs) of the mixing distribution, these
tests are theoretically shown to be able to adapt to complicated unspecified structures of count
data and also consistent against their corresponding ANOVA-type alternatives; the latter is a
result in parallel to classic claims made by Robinson (Robinson, 1973). The studied methods are
then applied to a single-cell RNA-seq data obtained from different cell types from brain samples
of autism subjects and healthy controls; empirically, they unveil genes that are differentially
expressed between autism and control subjects yet are missed using common tests. For justifying
their use, rate optimality of NPMLEs is also established in settings similar to nonparametric
Gaussian (Wu and Yang, 2020a) and binomial mixtures (Tian et al., 2017; Vinayak et al., 2019).

Keywords: Fisher-Pitman permutation tests, nonparametric MLE, nonparametric Poisson
mixture, single-cell genomics, minimax risk

1 Introduction

Considering an experiment with multiple samples drawn from multiple populations, distinguishing
possible difference among them in one or more dimensions is a fundamental statistical task. In the
classical test of the null hypothesis of no mean differences, one-way analysis of variance (ANOVA, cf.
Fisher (1925)) F -test is perhaps the most commonly used tool, and is the uniformly most powerful
invariant one under additional normal assumption, c.f. Scheffé (1959, page 50).

Despite its popularity, one-way ANOVA has its competing alternatives. In the context of ran-
domized experiments, Fisher (Fisher, 1935) initialized an ingenious permutation approach as an al-
ternative to performing ANOVA F -test. This idea was later developed further by Pitman (Pitman,
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1938). The resulting procedures, often termed the Fisher-Pitman permutation tests in literature,
achieve the appealing property of being exactly distribution-free and have been suggested in various
contexts as, e.g., when the distributional assumptions of F -tests no longer hold (Marascuilo and
McSweeney, 1977; Still and White, 1981; Berry and Mielke, 1983). Robustness properties have
been further studied empirically (Boik, 1987) and theoretically (Chung and Romano, 2013); power
analyses were also performed in Hoeffding (1952) and Robinson (1973).

Although being originally defined in Euclidean spaces, it is by now well understood that the
ANOVA F -tests and especially their permutation-type alternatives are able to adapt to an arbitrary
metric space. This is via the approach of “interpoint" distance functions (Mielke Jr et al., 1976;
Mielke Jr, 1984) that uses an alternative representation of the F statistic as a function of between-
and within-group pairwise distances. Thus, through replacing the original Euclidean distance by
any properly defined distance function, the idea of Fisher-Pitman permutation tests is now imple-
mentable in many complicated metric spaces beyond the Euclidean (Anderson, 2001; Mielke and
Berry, 2007; Petersen and Müller, 2019).

Our study of Fisher-Pitman-type permutation tests stems from the analysis of single-cell RNA-
seq (scRNA-seq) data, and particularly, a framework that was recently promoted in Sarkar and
Stephens (2021). There, the authors described how a separation of measurement and expression
models is able to clarify confusion in modeling scRNA-seq data, and accordingly advocated using
the terminology of Poisson mixtures to unify many existing models (cf. Table 1 in Sarkar and
Stephens (2021)). In detail, thinking about X(k)

ij to be the absolute expression of a specific gene
in cell i ∈ [Njk] := {1, 2, . . . , Njk} of subject j ∈ [nk] of population k ∈ [K], we are interested
in studying the following model of X(k)

ij that is a slight simplification to Sarkar and Stephens’s
Equation (1):

X
(k)
ij | λ

(k)
ij ∼ Poisson

(
r

(k)
ij λ

(k)
ij

)
; (measurement model) (1.1)

λ
(k)
ij ∼ Q

(k)
j . (expression model) (1.2)

Here r(k)
ij > 0 adjusts the cell “read depth” (cf. Zhang et al. (2020, Page 1)) and in this paper is

assumed to be known; Q(k)
j is a properly defined distribution that describes the “expression level"

of the gene in population k and is assumed to have a compact support on the nonnegative real line.
Adopting the statistical terminology, for each k ∈ [K] and j ∈ [nk], {X

(k)
ij , i = 1, . . . , Njk} then

independently follow Poisson mixture distributions of point mass functions (PMFs)

h
(k)
ij (x) :=

∫ ∞
0

e−λr
(k)
ij
{λr(k)

ij }x

x!
dQ

(k)
j (λ), x = 0, 1, 2, . . .

and a mixing distribution Q(k)
j that has to be characterized by a nonparametric model; see Sarkar

and Stephens (2021, Section “Modeling scRNA-seq data") for a discussion of why a nonparametric
model of Q(k)

j is preferred in single-cell genomics, though Sarkar and Stephens (2021) did not employ
such Poisson mixtures for individual level differential expression testing, which however is the main
focus of this work.

Based on the observations
{
X

(k)
ij , i ∈ [Njk], j ∈ [nk], k ∈ [K]

}
as well as the measure/expression

models (1.1)-(1.2), a natural question to ask is whether there exists any population-level gene

2



expression difference among the K groups. For this, we propose to leverage a Fisher-Pitman-type
permutation test based on consistent estimators

{
Q̃

(k)
j , j ∈ [nk], k ∈ [K]

}
of the mixing distributions{

Q
(k)
j , j ∈ [nk], k ∈ [K]

}
under Wasserstein metrics, which have received much attention in recent

mixture distribution estimation literature (see, among many others, Nguyen et al. (2013), Tian
et al. (2017), Vinayak et al. (2019), Wu and Yang (2020a), and the references therein). Particularly
appealing choices to us include the NPMLE Q̂

(k)
j and its Poisson-smoothed one h

Q̂
(k)
j

(notation to

be introduced by the end of this section); see Section 2 ahead for the detailed description of the
testing procedure.

Many methods have been developed for differential expression analysis of scRNA-seq data (Chen
et al., 2019). However, their focus is differential expression between two groups of cells instead of two
groups of individuals. For individual level testing, a standard approach is to add up gene expression
across all the cells (of a particular cell type) of an individual to create a pseudo-bulk sample,
and then apply the methods for differential expression analysis using bulk RNA-seq data, such as
DESeq2 (Love et al., 2014). The novelty of our proposed procedure is that we assess differential
expression across individuals using cell level data instead of pseudo-bulk data. Furthermore, the
proposed tests are shown to be consistent against their ANOVA-type alternatives, i.e., they are
able to asymptotically distinguish the null from any fixed alternative where the “between-group”
variation is larger than the “within-group” variation, a result that sheds insight to the power of the
developed tests and is in line with classic observations (Hoeffding, 1952; Robinson, 1973)1.

As a byproduct of our theoretical study, this paper further justifies the use of NPMLEs via estab-
lishing their rate-optimality in estimating the Poisson mixing distribution under the Wasserstein-1
(W1) metric. Although the consistency of the NPMLEs has been established in the literature for
different nonparametric mixture models (cf. Simar (1976) for nonparametric Poisson mixtures; and
Chen (2017) and the references therein for more general models), NPMLEs’ rates of convergence
and their matching to a minimax lower bound are long standing until very recently. Built on the
breakthroughs in binomial (Tian et al., 2017; Vinayak et al., 2019) and Gaussian mixtures (Wu and
Yang, 2020a) (see also Jiang and Zhang (2019) for a related study on the nonparametric likelihood
ratio test) as well as the new analytical techniques devised in Jiao et al. (2015), Wu and Yang
(2016), Jiao et al. (2018), and Han and Shiragur (2020), we are now able to further the optimality
of NPMLEs to the nonparametric Poisson mixtures under minimal assumptions on the true mixing
distribution function. These results yield additional theoretical support for the use of NPMLEs in
our developed tests.

The rest of this paper is organized as follows. Section 2 describes the model setup and studies
the size and power of the proposed permutation tests. Section 3 discusses implementation of the
developed test. The finite-sample performance of the developed (smoothed or not) NPMLE-based
permutation tests is investigated in Section 4. Section 5 applies the studied tests to a real scRNA-
seq data containing single brain nuclei from autism subjects and healthy controls (Velmeshev et al.,
2019) and discover significantly differentially expressed genes that cannot be detected using the
benchmark DESeq2 method applied on pseudo-bulk data (Love et al., 2014). In Section 6, we

1In addition to developing a more flexible non-parametric model, another route to boost the power of differential
expression analysis is to de-noise the scRNA-seq data; see Zhang et al. (2021) for a proposal along that track.
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justify the use of NPMLEs in the permutation tests outlined in Section 2 by providing minimax
optimality results for the NPMLE for nonparametric mixture of Poissons. In the last section, Section
7 we provide outline of proofs. All the technical details of the proofs are relegated to a supplement.

Notation. For any two distributions P,Q on the real line, the Wasserstein-1 distance is defined
to be W1(P,Q) := sup`∈Lip1

∫
`(dP − dQ), where Lip1 represents all 1-Lipschitz functions. For any

distribution P on the nonnegative real line, we define its Poisson smoothed version as

hQ(x) :=

∫ ∞
0

e−λ
λx

x!
dQ(λ), x = 0, 1, 2, ....

For any two constants a, b, we denote a ∨ b := max{a, b} and a ∧ b := min{a, b}.

2 Permutation tests

2.1 Setup

Throughout this section, it is assumed that the observations are heterogeneous count data {X(k)
ij , i ∈

[Njk], j ∈ [nk], k ∈ [K]} with Njk = Njk,n → ∞ and nk = nk,n → ∞ as n :=
∑
nk → ∞.

In contrast, K ≥ 2 is assumed to be a fixed integer. It is further assumed that the probability
measures Q(k)

j ’s in (1.1) have a common support [0, B] for some B > 0 that is known a priori (cf.
appendix Section B for a real implementation) and kept to be fixed in this section; later in Section
6 we will explore a more general setting where B = Bn is allowed to increase with n.

To facilitate the approach to distinguishing differences among the K groups, in addition to
the measurement model (1.1) and the expression model (1.2), a third-layer “population model" is
introduced to encourage independent and identically distributed (i.i.d.) randomness among each nk
within-group expression models:

for each k ∈ [K] : Q
(k)
1 , . . . , Q(k)

nk

i.i.d.∼ Qk. (population model) (2.1)

Here Qk is understood to be a probability measure over the Prohorov-metric topology of the space
of probability measures that are defined on the Borel σ-field of [0, B]; details about constructing
Prohorov-metric topology are referred to Pages 72-73 in Billingsley (1999). Following the discussions
in Sarkar and Stephens (2021, Section “Modeling scRNA-seq data"), we do not specify Qk except
for assuming boundedness and well-definedness.

To wrap up, the model considered in this manuscript, summarizing the three layers ((1.1), (1.2),
(2.1)), is: {

X
(k)
ij , i ∈ [Njk], j ∈ [nk], k ∈ [K]

}
are independently distributed with PMFs∫ [ ∫ B

0
e−λr

(k)
ij
{λr(k)

ij }x

x!
dQ(λ)

]
dQk(Q), x = 0, 1, 2, . . . . (2.2)

Under the above model, it is understood that Q1, . . . ,QK andK ≥ 2 are fixed, all of which won’t
change with n. Besides Q1, . . . ,QK and accordingly the random measures Q(k)

j ’s, the observations

X
(k)
ij ’s also depend on the read depths r(k)

ij = r
(k)
ij,n’s that are allowed to change with n. We are hence

faced with a triangular array of possibly highly heterogeneous observations.
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2.2 Tests

Under Model (2.2), we are interested in testing the following null hypothesis,

H0 : Q1 = Q2 = · · · = QK , (2.3)

and aim to detect any population-level difference between groups. Note that here, due to the
incorporation of read depths r(k)

ij ’s, the measurements themselves even within each group are gen-
erally not identically distributed; thus, a naive empirical distribution function based test could be
substantially biased.

The main interest of this paper is to explore how robust a Fisher-Pitman-type test can be when
each unobserved subject-level random measure Q(k)

j is replaced by a plug-in-type estimate Q̃(k)
j and

its Poisson-smoothed version h
Q̃

(k)
j

calculated from the measurements X(k)
1j , . . . , X

(k)
Njkj

. To this end,

let’s regulate Q̃(k)
j as follows.

Definition 2.1. For any j ∈ [nk] and any k ∈ [K], an estimator Q̃(k)
j of Q(k)

j is said to be
subject-specific conditionally W1-consistent (shorthanded as “conditionally W1-consistent”) if it is
(i) a function of X(k)

1j , . . . , X
(k)
Njkj

; (ii) of support [0, B]; and (iii) satisfying

E
{
W1

(
Q̃

(k)
j , Q

(k)
j

) ∣∣∣ Q(k)
j

}
→ 0 as Njk = Njk,n →∞ (2.4)

for almost all Q(k)
j with regard to the measure Qk.

We next consider the Poisson-smoothed mixing distribution estimator

h
Q̃

(k)
j

:=

∫ ∞
0

e−λ
λx

x!
dQ̃

(k)
j (λ)

based on any conditionally W1-consistent estimator Q̃(k)
j . It justifies the use of smoothed NPMLEs

as an alternative to directly using the original ones; see also Proposition 3.1 in Lambert and Tierney
(1984) for more results as read depths are all forced to be equal.

Theorem 2.1. Suppose Q̃(k)
j is conditionally W1-consistent. Then

E
{
W1

(
h
Q̃

(k)
j

, h
Q

(k)
j

) ∣∣∣ Q(k)
j

}
→ 0 as Njk = Njk,n →∞

for almost all Q(k)
j with regard to the measure Qk.

A particularly appealing candidate estimator of the mixing distribution is the following NPMLE
Q̂

(k)
j with read depth incorporated:

Q̂
(k)
j ∈ argmax

Q of support [0,B]

∑
i∈[Njk]

log

∫ ∞
0

e−λr
(k)
ij
{λr(k)

ij }
X

(k)
ij

X
(k)
ij !

dQ(λ). (2.5)

Note that here Q̂(k)
j may not be unique due to read depths, and if there are multiple choices, pick

any one of them (cf. Remark 3.1). We shall discuss the calculation of Q̂(k)
j in Section 3. The next

theorem shows that NPMLEs are conditionally W1-consistent under no further assumptions on the
population measures Qk’s except for the already imposed bounded support one.
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Theorem 2.2 (Conditionally W1-consistency of NPMLEs). Assume Njk = Njk,n →∞ as n→∞,
r

(k)
ij = r

(k)
ij,n ∈ [γ0, γ1] are uniformly upper and lower bounded by two positive universal constants

γ0, γ1, and Qk’s have a common fixed support [0, B]. We then have the NPMLEs Q̂(k)
j ’s are all

conditionally W1-consistent.

Remark 2.1. In the literature, consistency of NPMLEs of mixing distributions under the classical
i.i.d. mixture distribution setup (corresponding to the case with all read depths identical to each
other) has been studied in depth. Notable results include Kiefer and Wolfowitz (1956), Simar (1976),
Pfanzagl (1988); note also the survey by Chen (Chen, 2017). However, although arising naturally
from single-cell genomics modeling, read-depth-incorporated nonparametric mixture distributions
have not received much attention in mathematical statistics and, to our knowledge, Theorem 2.2
delivers the first consistency result for NPMLEs under this heterogeneous setting.

Based on any conditionallyW1-consistent estimators {Q̃(k)
j } of {Q

(k)
j } and their Poisson-smoothed

versions h
Q̃

(k)
j

’s, the proposed ANOVA-type (pseudo-F ) test statistics are

F̃ :=

1
n

∑
k1,k2∈[K]

∑
j1∈[nk1

],j2∈[nk2
]

W1

(
Q̃

(k1)
j1

, Q̃
(k2)
j2

)2
−
∑

k∈[K]

1
nk

∑
j1,j2∈[nk]

W1

(
Q̃

(k)
j1
, Q̃

(k)
j2

)2

∑
k∈[K]

1
nk

∑
j1,j2∈[nk]

W1

(
Q̃

(k)
j1
, Q̃

(k)
j2

)2

and

F̃h :=

1
n

∑
k1,k2∈[K]

∑
j1∈[nk1

],j2∈[nk2
]

W1

(
h
Q̃

(k1)
j1

, h
Q̃

(k2)
j2

)2
−
∑

k∈[K]

1
nk

∑
j1,j2∈[nk]

W1

(
h
Q̃

(k)
j1

, h
Q̃

(k)
j2

)2

∑
k∈[K]

1
nk

∑
j1,j2∈[nk]

W1

(
h
Q̃

(k)
j1

, h
Q̃

(k)
j2

)2 .

It is ready to check that these two test statistics both reduce to the original one-way ANOVA statistic
if the examined space is the real space equipped with the Euclidean norm. The studied statistics
then generalize the one-way ANOVA statistics to theW1-metric measure space with different inputs
(mixing distribution smoothed or not); similar generalizations have been made in various other (non-
)Euclidean spaces (Anderson, 2001; Mielke and Berry, 2007; Petersen and Müller, 2019).

We then move on to introduce the corresponding permuted ANOVA-type test statistics. To
this end, for each permutation π : [n] → [n], let Πj,k = (Πj,k

1 ,Πj,k
2 ) := π↑(j, k) represent the

original subject and population indices corresponding to “the j-th subject in the k-th group” after
permutation π. The permuted test statistics are

F̃ π :=

1
n

∑
k1,k2∈[K]

∑
j1∈[nk1

],j2∈[nk2
]

W1

(
Q̃

(k1)
j1

, Q̃
(k2)
j2

)2
−
∑

k∈[K]

1
nk

∑
j1,j2∈[nk]

W1

(
Q̃

(Π
j1,k
2 )

Π
j1,k
1

, Q̃
(Π
j2,k
2 )

Π
j2,k
1

)2

∑
k∈[K]

1
nk

∑
j1,j2∈[nk]

W1

(
Q̃

(Π
j1,k
2 )

Π
j1,k
1

, Q̃
(Π
j2,k
2 )

Π
j2,k
1

)2
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and

F̃ πh :=

1
n

∑
k1,k2∈[K]

∑
j1∈[nk1

],j2∈[nk2
]

W1

(
h
Q̃

(k1)
j1

, h
Q̃

(k2)
j2

)2
−
∑

k∈[K]

1
nk

∑
j1,j2∈[nk]

W1

(
h
Q̃

(Π
j1,k
2 )

Π
j1,k
1

, h
Q̃

(Π
j2,k
2 )

Π
j2,k
1

)2

∑
k∈[K]

1
nk

∑
j1,j2∈[nk]

W1

(
h
Q̃

(Π
j1,k
2 )

Π
j1,k
1

, h
Q̃

(Π
j2,k
2 )

Π
j2,k
1

)2 .

The following are the Fisher-Pitman-type permutation tests with nominal level α:

T̃α :=

{
1, if P (F̃ π < F̃ | Q̃(k)

j ’s) ≥ 1− α,
0, otherwise,

and

T̃h,α :=

{
1, if P (F̃ πh < F̃h | Q̃

(k)
j ’s) ≥ 1− α,

0, otherwise,

where the probability here is only with respect to the random permutation π.
As the (Poisson smoothed-)NPMLEs are chosen, the corresponding tests T̃α and T̃h,α are speci-

fied as T̂α and T̂h,α.

2.3 Theory

This subsection provides the necessary theoretical support on the presented tests F̃ π and F̃ πh . Par-
ticular focus is on the asymptotic size and consistency against Robinson-type ANOVA alternatives
(cf. Theorem 3 in Robinson (1973)). To minimize assumptions and for presentation clearness, we
are focused on the following balanced design case:

Assumption 2.1. The design is balanced so that nk = n/K and Njk = N for j ∈ [nk], k ∈ [K].
In addition, it is assumed that the sets {r(k)

ij , i ∈ [N ]} are invariant with respect to both j and k.

Remark 2.2. We note that Assumption 2.1 can be weakened in a straightforward manner to allow
for nk/n→ 1/K, Njk’s asymptotically comparable, and the sets {r(k)

ij , i ∈ [Njk]} all weakly converge
to a same probability measure that does not depend on the particular choice of j and k (see Shi et al.
(2020, Proposition 2.2) as well as Deb and Sen (2021) for a similar setup in the recent independence
testing literature). We however do not pursue these tracks but rather leave them to the readers of
interest to verify.

Our first result concerns with the sizes of proposed tests, is of a finite-sample nature, and is a
direct consequence of a long line of literature on permutation-based tests.

Theorem 2.3 (Size validity). We have, for any finite N and n, as long as H0 in (2.3) and As-
sumption 2.1 hold,

P (T̃α = 1|H0) ≤ α and P (T̃h,α = 1|H0) ≤ α.

In the following, we are focused on asymptotic results with the balanced design and let N =

Nn →∞ as n→∞. The next theorem is the main result of this subsection.
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Theorem 2.4 (Test consistency). Consider Q̃(k)
j ’s to be conditionally W1-consistent estimators of

Q
(k)
j ’s. If Assumption 2.1 holds, then the following two statements are true.

(a) Under any fixed alternative regarding Q1, . . . ,QK such that

H1 :
1

K

∑
k∈[K]

E
{
W1

(
Q

(k)
1 , Q

(k)
2

)2}
<

∑
k1 6=k2∈[K]

E{W1(Q
(k1)
1 , Q

(k2)
1 )2}

K(K − 1)
, (2.6)

we have lim
n→∞

P (T̃α = 1|H1) = 1 for each α ∈ (0, 1).

(b) Under any fixed alternative regarding Q1, . . . ,QK such that

H1,h :
1

K

∑
k∈[K]

E
{
W1

(
h
Q

(k)
1

, h
Q

(k)
2

)2}
<

∑
k1 6=k2∈[K]

E
{
W1

(
h
Q

(k1)
1

, h
Q

(k2)
1

)2}
K(K − 1)

, (2.7)

we have lim
n→∞

P (T̃h,α = 1|H1,h) = 1 for each α ∈ (0, 1).

Specific to (smoothed-)NPMLEs, the following theorem is a direct consequence of Theorems
2.2-2.4.

Corollary 2.1. Suppose Assumption 2.1 and all conditions in Theorem 2.2 hold. Then the following
are true for any α ∈ (0, 1).

(a) For any finite N and n, as long as H0 in (2.3) holds, we have

P (T̂α = 1|H0) ≤ α and P (T̂h,α = 1|H0) ≤ α.

(b) Concerning any fixed alternative H1 (or H1h), we have

lim
n→∞

P (T̂α = 1 | H1) = 1 and lim
n→∞

P (T̂h,α = 1 | H1,h) = 1.

3 Algorithms

This section presents three algorithms to calculate (2.5),

(1) the vertex direction method (VDM), cf. Fedorov (1972), Simar (1976), Wu (1978a), Wu
(1978b), Böhning (1982), and Lindsay (1983a);

(2) the vertex exchange method (VEM), cf. Böhning (1985) and Böhning (1986);

(3) the intra simplex direction method (ISDM), cf. Lesperance and Kalbfleisch (1992).

To simplify the notation, in this section we remove j, k from the subscript and use {Xi, i ∈ [N ]}
and {ri, i ∈ [N ]} to denote the sample points and the corresponding read-depths. Moreover, we use
Q̂ to denote the NPMLE defined in (2.5) based on {Xi, i ∈ [N ] and {ri, i ∈ [N ]}. For a discrete
measure G on [0, B] with support points {λm,m ∈ [M ]}, let G(λm) stand for the mass G assigned
at λm for each m ∈ [M ]. We define

Φ(G) :=
1

N

∑
i∈[N ]

log

 ∑
m∈[M ]

G(λm)e−λmri(λmri)
Xi


8



and its directional derivative from G to δλ as

Φ′(G, δλ) := lim
ε→0+

ε−1
{

Φ{(1− ε)G⊕ εδλ} − Φ(G)
}

=
1

N

∑
i∈[N ]

e−λri(λri)
Xi∑

m∈[M ]G(λm)e−λmri(λmri)Xi
− 1.

Here δλ represents the unit measure at λ ∈ [0, B]. Lastly, for any two signed measures ν1 and ν2 on
the real line, we denote ν1 ⊕ ν2 as the sum of ν1 and ν2, and ν1 	 ν2 as the sum of ν1 and −ν2.

With these notation, we are now ready to present the VDM, VEM, and ISDM algorithms for
calculating Q̂.

The VDM Algorithm

Step 0 (Initialization). Select a point λ1 ∈ (0, B]. Let G1 = δλ1 be the initial value. Set the loop
index L = 1.

Step 1 If max
λ∈[0,B]

Φ′(GL, δλ) = 0, then stop and return GL. Otherwise, find λmax = argmax
λ∈[0,B]

Φ′(GL, δλ).

Step 2 Find αmax = argmaxα∈[0,1] Φ
{

(1− α)GL ⊕ αδλmax

}
.

Step 3 Set GL+1 = (1− α)GL ⊕ αmaxδλmax . Set L = L+ 1 and go to Step 1.

The VEM Algorithm

Step 0 (Initialization). Select a point λ1 ∈ (0, B]. Let G1 = δλ1 be the initial value. Set the loop
index L = 1.

Step 1 If max
λ∈[0,B]

Φ′(GL, δλ) = 0, then stop and return GL. Otherwise, find λmax = argmax
λ∈[0,B]

Φ′(GL, δλ)

and λmin = argmin
λ∈supp(GL)

Φ′(GL, δλ), where supp(GL) stands for the support of GL.

Step 2 Find αmax = argmaxα∈[0,1] Φ
{
GL ⊕

(
αGL(λmin)(δλmax 	 δλmin)

)}
.

Step 3 Set GL+1 = GL ⊕
(
αmaxGL(λmin)(δλmax 	 δλmin)

)
. Set L = L+ 1 and go to Step 1.

The ISDM Algorithm

Step 0 (Initialization). Select a point λ1 ∈ (0, B]. Let G1 = δλ1 be the initial value. Set the loop
index L = 1.

Step 1 If max
λ∈[0,B]

Φ′(GL, δλ) = 0, then stop and returnGL. Otherwise, find all local maxima λmax,1, . . . , λmax,N

of λ 7→ Φ′(GL, δλ) on [0, B], where N represents the number of local maxima.

Step 2 Find (αmax,0, . . . , αmax,N ) = argmax
α0,...,αN

Φ
{

(1−α0)GL⊕α1δλmax,1 ⊕ · · · ⊕αN δλmax,N

}
subject to

α0 ≥ 0, α1 ≥ 0, · · · , αN ≥ 0 and α0 + α1 + · · ·+ αN = 1.
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Step 3 Set GL+1 = (1 − αmax,0)GL ⊕ αmax,1δλmax,1 ⊕ · · · ⊕ αmax,N δλmax,N . Set L = L + 1 and go to
Step 1.

The convergence of VDM, VEM, and ISDM is guaranteed by the following theorem.

Theorem 3.1. Assuming ri > 0 for each i ∈ [N ]. For each of VDM, VEM and ISDM, if it stops
for some L, then we have Φ(GL) = Φ(Q̂); otherwise, Φ(GL)→ Φ(Q̂) as L→∞.

Remark 3.1. Unlike in the traditional setting where all read depths are identical, when hetero-
geneous read depths are incorporated, although G 7→ Φ(G) is still a concave function, there is no
theoretical guarantee about the uniqueness of Q̂’s that maximize the objective function and whether
the maximizer is unique or not is still open. This issue of computational uniqueness shall be com-
pared to the parallel result in Theorem 2.2, which provides theoretical guarantee for the consistency
of an arbitrary maximizer of the objective function as the sample size increases to infinity.

4 Simulation studies

This section aims to show that the two NPMLE-based (smoothed or not) tests presented in Section
2 cannot dominate each other. Throughout the whole section, we fix K = 2 and consider the
following three designs across with several cases of population models.

Designs.

(A) Balanced designs with all read depths set to be 1, n1 = n2 = 10, and Njk = 50, 100, and 500

for each j, k.
(B) Balanced designs with read-depth effects with n1 = n2 = 10 and Njk = 50, 100 and 500 for

each j, k. In addition, in each round of the simulation, {r(1)
i1 , i ∈ [N11]} are i.i.d. generated

from Uniform(0.5, 1.5) and then let r(k)
ij = r

(1)
i1 for each j, k.

(C) A particular unbalanced design motivated by the single-cell RNA-seq data in Section 5 ahead,
with n1 = 10, n2 = 13 and Njk be as in Table 1. For each round of the simulation, {r(k)

ij , i ∈
[Njk], j ∈ [nk], k ∈ [K]} are i.i.d. generated from Uniform(0.5, 1.5).

Table 1: Njk in the unbalanced design (Design (C))

N1,1 N2,1 N3,1 N4,1 N5,1 N6,1 N7,1 N8,1 N9,1 N10,1 N1,2 N2,2

388 1142 162 391 215 278 284 193 542 106 202 759
N3,2 N4,2 N5,2 N6,2 N7,2 N8,2 N9,2 N10,2 N11,2 N12,2 N13,2

415 69 327 431 414 451 275 733 422 65 362

We then move on to specify the population model (2.1) used in our simulation studies. Hereafter,
let Gam(a, b;B) denote a truncated Gamma distribution with a shape parameter a > 0, a rate
parameter b > 0, and with any realization larger than B shrunken to B. Let {∆(k)

j , j ∈ [nk], k ∈ [K]}
be i.i.d. generated from Uniform(−1, 1).

Population models.
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1. (a) Q(k)
j ∼ Gam(14 + ∆

(k)
j , 7/4; 50) for each j ∈ [nk], k ∈ [2].

(b) Q(k)
j ∼ Gam(14 + ∆

(k)
j , 7; 50) for each j ∈ [nk], k ∈ [2].

(c) Q(k)
j ∼ Gam(6 + ∆

(k)
j , 1; 50) for each j ∈ [nk], k ∈ [2].

2. (a) Q(1)
j ∼ Gam(14 + ∆

(1)
j , 7/4; 50) for j ∈ [n1] and Q(2)

j ∼ Gam(6 + ∆
(2)
j , 3/4; 50) for j ∈ [n2].

(b) Q(1)
j ∼ Gam(14 + ∆

(1)
j , 7/3; 50) for j ∈ [n1] and Q(2)

j ∼ Gam(6 + ∆
(2)
j , 1; 50) for j ∈ [n2].

(c) Q(1)
j ∼ Gam(14 + ∆

(1)
j , 7/2; 50) for j ∈ [n1] and Q(2)

j ∼ Gam(6 + ∆
(2)
j , 3/2; 50) for j ∈ [n2].

3. (a) Q(1)
j ∼ Gam(4 + ∆

(1)
j , 1; 20) for j ∈ [n1] and Q(2)

j ∼ Gam(5 + ∆
(2)
j , 1; 20) for j ∈ [n2].

(b) Q(1)
j ∼ Gam(5 + ∆

(1)
j , 1; 20) for j ∈ [n1] and Q(2)

j ∼ Gam(6 + ∆
(2)
j , 1; 20) for j ∈ [n2].

(c) Q(1)
j ∼ Gam(6 + ∆

(1)
j , 1; 20) for j ∈ [n1] and Q(2)

j ∼ Gam(7 + ∆
(2)
j , 1; 20) for j ∈ [n2].

4. (a) Q(1)
j ∼ Gamma(11+∆

(1)
j , 1; 50) for j ∈ [n1] and Q(2)

j ∼ Gamma(12+∆
(2)
j , 1; 50) for j ∈ [n2].

(b) Q(1)
j ∼ Gamma(12+∆

(1)
j , 1; 50) for j ∈ [n1] and Q(2)

j ∼ Gamma(13+∆
(2)
j , 1; 50) for j ∈ [n2].

(c) Q(1)
j ∼ Gamma(13+∆

(1)
j , 1; 50) for j ∈ [n1] and Q(2)

j ∼ Gamma(14+∆
(2)
j , 1; 50) for j ∈ [n2].

Our focus is on examining as well as comparing the empirical performance of the tests T̂α and
T̂h,α with NPMLE calculated using the oracle B. Both of them are based on an exact critical value
approximated by 1,000 Monte Carlo simulations. The underlying nominal significance level is 0.05.
For each setting, 1, 000 rounds of simulations were performed. We use VEM to compute NPMLEs
with a stop tolerance 0.01. Optimization in Step 1 and Step 2 in VEM is implemented by the default
interior-point algorithm in Matlab; see the support page of function ‘fmincon’ for further details.

Table 2 shows the empirical sizes and powers (rejection frequencies) of tests T̂α and T̂h,α. In
short, the results confirm our earlier theoretical claims on the sizes and powers of Tα and T̂h,α in the
different models and balanced designs (Designs (A) and (B)). Moreover, even under the unbalanced
design (Design (C)), Tα and T̂h,α still perform well in terms of their empirical sizes and powers.

Some more detailed comparisons between Tα and T̂h,α are in line. The following observations
depend on the “signal strengths” D and Dh, defined as follows:

D := E{W1(Q
(1)
1 , Q

(2)
1 )2} −

(
E{W1(Q

(1)
1 , Q

(1)
2 )2}+ E{W1(Q

(2)
1 , Q

(2)
2 )2}

)
/2 (4.1)

and

Dh := E{W1(h
Q

(1)
1

, h
Q

(2)
1

)2} −
(
E{W1(h

Q
(1)
1

, h
Q

(1)
2

)2}+ E{W1(h
Q

(2)
1

, h
Q

(2)
2

)2}
)
/2. (4.2)

First, empirical results for Model 1 illustrates that under H0, empirical powers are close to the
nominal level α = 0.05, confirming the size validity of T̂α and T̂h,α. In addition, even under the
unbalanced design (Design (C)), empirical powers are stable and close to the nominal level α = 0.05,
indicating the robustness of the studied tests.

Second, we compare the empirical powers using Models 2, 3, and 4. In Model 2, D is significantly
larger than Dh and the corresponding empirical powers of T̂α are all larger than these of T̂h,α in all
three considered designs (Designs (A), (B), and (C)). This phenomenon is not surprising to us as
the difference between variation between groups and variation within groups in mixing distributions
is much larger than that in mixture distributions. Therefore, T̂α is more powerful than T̂h,α.

In Model 3, D is approximately equal to Dh and the empirical power of T̂α is smaller than the
empirical power of T̂h,α when N is small (e.g., 50 and 100). However, the empirical powers of T̂α and
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Table 2: Empirical sizes and powers of T̂α and T̂h,α; here D and Dh are defined in (4.1) and (4.2)

Model 1(a) 1(b) 1(c) 2(a) 2(b) 2(c) 3(a) 3(b) 3(c) 4(a) 4(b) 4(c)
D 0 0 0 0.59 0.32 0.15 0.99 0.99 0.99 0.99 0.99 0.99
Dh 0 0 0 0.22 0.10 0.03 0.99 0.99 0.99 0.99 0.99 0.99

N Empirical sizes/powers for T̂α under Design (A)
50 0.054 0.050 0.045 0.644 0.595 0.356 0.811 0.772 0.698 0.538 0.501 0.502
100 0.043 0.055 0.053 0.901 0.835 0.583 0.870 0.872 0.843 0.723 0.680 0.668
500 0.049 0.049 0.060 0.996 0.999 0.965 0.952 0.958 0.941 0.850 0.831 0.829

N Empirical sizes/powers for T̂h,α under Design (A)
50 0.054 0.045 0.049 0.284 0.210 0.111 0.833 0.816 0.767 0.650 0.635 0.624
100 0.038 0.063 0.049 0.371 0.264 0.138 0.896 0.892 0.882 0.797 0.788 0.771
500 0.042 0.047 0.055 0.492 0.309 0.186 0.951 0.961 0.947 0.944 0.924 0.921

N Empirical sizes/powers for T̂α under Design (B)
50 0.044 0.048 0.058 0.644 0.508 0.338 0.796 0.763 0.729 0.559 0.522 0.520
100 0.053 0.050 0.062 0.863 0.779 0.518 0.878 0.862 0.846 0.714 0.735 0.679
500 0.036 0.052 0.054 1.000 0.998 0.972 0.958 0.952 0.939 0.922 0.920 0.913

N Empirical sizes/powers for T̂h,α under Design (B)
50 0.044 0.050 0.054 0.262 0.193 0.100 0.821 0.806 0.772 0.632 0.619 0.602
100 0.058 0.041 0.053 0.350 0.276 0.132 0.885 0.877 0.858 0.772 0.788 0.759
500 0.036 0.045 0.057 0.501 0.414 0.187 0.956 0.950 0.943 0.932 0.928 0.924

N Empirical sizes/powers for T̂α under Design (C)
Table 1 0.048 0.050 0.051 0.994 0.988 0.900 0.962 0.940 0.951 0.910 0.904 0.907

N Empirical sizes/powers for T̂h,α under Design (C)
Table 1 0.047 0.051 0.052 0.452 0.346 0.173 0.966 0.947 0.952 0.929 0.920 0.922

T̂h,α are close whenN is large. Similar observation applies to Model 4, whereD is also approximately
equal to Dh. However, compared to Model 3, the mixing distributions in Model 4 have larger B
and thus the empirical powers of T̂h,α are higher than the empirical powers of T̂α even for N = 500,
especially under Design (A). Some pilot studies to explain this phenomenon will be put in Section 6,
where we analyze the finite-sample behavior of the NPMLE under an exploratory simplified setting
where all read depths are fixed to be 1. There, the rate of convergence of NPMLE, at the worst
case, is showed to be O(log logN/ logN); in contrast, Lambert and Tierney (1984, Lemma 4.1 and
Theorem 4.1) showed that the Poisson-smoothed NPMLE attains a near-root-n rate of convergence
to the mixture distribution.

12



5 Applications to single-cell genomics

This section applies the studied permutation tests to a scRNA-seq data. There has been a large
literature studying fitting RNA-seq data using Poisson mixtures including, e.g., over-dispersed Pois-
son model (Robinson et al., 2010), Poisson-Gamma model (Love et al., 2014; Huang et al., 2018),
Poisson-Beta model (Vu et al., 2016), Poisson-log normal model (Silva et al., 2019), Poisson mixture
model with K-clusters (Rau et al., 2015), finite Poisson mixture models (Wu et al., 2013), zero-
inflated mixture Poisson linear models (Liu et al., 2019), Poisson mixture models with unimodal
mixing distributions (Lu, 2018). Compared to parametric Poisson mixture models, nonparametric
Poisson mixture models haven’t received much attention; some notable exceptions include Bi and
Davuluri (2013), Dadaneh et al. (2018), Sarkar and Stephens (2021), the latter of which was closely
followed by us.

5.1 Data set description

The scRNA-seq data used in this paper is obtained from Velmeshev et al. (2019), which focused
on autism spectrum disorder (ASD) and recorded gene expression of 23 subjects (13 ASD v.s. 10
control) and 18,041 genes for each subject from 17 different cell types and 2 different brain regions.
Here we focus on the brain region prefrontal cortex, which is more relevant to autism disease
etiology. Moreover, each subject has 7 covariates including age, sex, diagnosis, capbatch, seqbatch,
post-mortem interval (PMI), and RNA integrity number (RIN).

We focus on a pre-selected subset including 100 genes (names of the genes put in Table 3) that
were documented to be related to body height; for relation between ASD and body height, see,
e.g., Fukumoto et al. (2011) and Chawarska et al. (2011). In addition to permutation testing with
either estimated mixing distributions or mixture distributions, we also consider DESeq2 (Love et al.,
2014) as a benchmark. In implementing the two considered permutation tests, we adopt a common
strategy to incorporate four covariates age, sex, seqbatch, and RIN. The other two covariates PMI
and capbatch are not significantly associated with gene expression given the other covariates, since
their p-value distributions across all genes are uniform. The corresponding tests were denoted
as T̂Z (with the original NPMLE) and T̂h,Z (with the Poisson-smoothed NPMLE). Details of the
implementation were put in appendix Section B.

5.2 Implementation results

Using T̂Z , 9 genes are significant under the threshold of false discovery rate (FDR) 0.05 after
multiple testing correction by the Benjamini-Hochberg procedure. Replacing T̂Z by T̂h,Z , 8 genes
are significant under the same threshold of FDR and 7 genes are coincident with significant genes
found by T̂Z . This shows some consistency between T̂Z and T̂h,Z .

Furthermore, by DESeq2 there are 7 significant genes under the same threshold of FDR and all
of them are coincident with significant genes found by T̂Z . In other words, among significant genes
found by T̂Z , 78% significant genes are coincident with genes found by DESeq2 and 22% are new
which means T̂Z could enrich the set of significant genes found by the standard method DESeq2.
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Figure 1: Significant genes selected using Mixing (T̂Z), Mixture (T̂h,Z), and DESeq2 methods.

Similarly, 6 genes are coincident with significant genes found by T̂h,Z . In other words, among
significant genes found by T̂h,Z , 75% significant genes are coincident with genes found by DESeq2
and 25% are new which means T̂h,Z could enrich the set of significant genes found by the standard
method DESeq2. In one word, both T̂Z and T̂h,Z could enrich the set of significant genes found by
DESeq2. Further details are summarized in Figure 1.

Our results can also be justified by functions of significant genes. For example, fasting blood glu-
cose measurement is not only one of functions of gene DHRS7B, but also related to ASD (Hoirisch-
Clapauch and Nardi, 2019). More such results are summarized in Table 4.

6 Minimax optimality of the Poisson NPMLEs

This section provides additional theoretical support for the use of NPMLEs in forming up the tests
T̂α and T̂h,α in Section 2. To this end, due to the technical challenges, focus is restricted to a
simplified setting of (2.2), where the observations {Xi, i ∈ [N ]} independently follow a distribution
of PMF

hQ(x) =

∫ B

0
e−λ

λx

x!
dQ(λ), x = 0, 1, 2, . . . , (6.1)

where Q is a deterministic measure supported on [0, B] that cannot be characterized by a simple
parametric model. This is exactly the classic nonparametric Poisson mixture setup, and we study
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Table 3: All genes used in Section 5

DST CHSY3 TSC2 EHD4 HERC1 KIF16B DLGAP1 PIK3CG
ELL ODF2L FBXL5 LNX1 ERGIC3 CBFA2T2 FAM20A STAT2
DAP SSH2 WDR60 SAXO1 FOXP2 SAMD4A TSPAN9 ARAP3
GHR KCNK9 RGL1 SOCS5 ZNF76 ADAMTS2 DHRS7B PNMA8C
KIZ SHPRH RBMS3 MFSD2B NR4A3 CCDC171 RAB33A WDR70
IL16 MTMR3 CDK10 ZNF628 CAPZB ATXN7L3 PSKH1 FGFRL1
BST2 UMAD1 CPED1 ESYT2 LRRC43 SMARCA4 MYO18A IL17RD
LHX2 FBP2 ZC3H13 SRRM2 NOTCH1 HSD17B3 SBNO1 EIF3H
RLF LAYN SUSD5 DOT1L WARS2 RPS4XP13 PHF11 CDK11B
DAZL CYFIP2 ST7L CWC27 C9orf152 TOB1-AS1 HIF1AN KLHL28
BCL9 LRWD1 LMO7 PTENP1 CEP112 LINC01572 PPP4R2 UBE2Z
NRK GCLC PPM1H ITGA9 HIP1R PPP1R16A POLR3E TANC2
ANKDD1A ZNF710-AS1 ZRANB2-AS2 DNAJC27-AS1

Table 4: Significant genes on ASD with some literature support. The first column includes names
of genes, the second column includes functions potentially related to ASD, and the third column
includes literatures supports

gene name related functions literatures
DHRS7B fasting blood glucose measurement Hoirisch-Clapauch and Nardi (2019)
WDR60 abnormality of refraction Ezegwui et al. (2014)
EIF3H reaction time measurement Baisch et al. (2017)
LRWD1 insomnia measurement Hohn et al. (2019)
RAB33A bipolar disorder Joshi et al. (2012)
TSPAN9 creatinine measurement Cameron et al. (2017)
WARS2, CDK11B heel bone mineral density Calarge and Schlechte (2017)
SMARC4, TOB1-AS1 cholesterol measurement Benachenhou et al. (2019)
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the nonasymptotic behavior of the following NPMLE

Q̂ = argmax
Q of support [0,B]

∑
i∈[N ]

log hQ(Xi). (6.2)

Note that, the above NPMLE is the simplified version of (2.5) with all read depths there forced to
be one.

There has been an enormous literature studying the NPMLE (6.2) under the nonparametric
Poisson mixture model (6.1). Earlier results on the existence, discreteness (of the NPMLE support),
and computation include, among many others, Simar (1976), Laird (1978), Jewell (1982), Lindsay
(1983a), Lindsay (1983b), and Lindsay and Roeder (1993); see also Lindsay (1995) for a survey.
Consistency of NPMLEs were established in, among many others, Kiefer and Wolfowitz (1956),
Simar (1976), and Pfanzagl (1988); see also Chen (2017) for a survey.

Beyond these important results, there has been another track of substantial research that is fo-
cused on establishing the minimax rate in estimating the mixing distribution (mostly on the density
function) of nonparametric Poisson mixtures. Notable results there include, e.g., Zhang (1995), Loh
and Zhang (1996), van de Geer (1996), Hengartner (1997), van de Geer (2003), Roueff and Rydén
(2005), and Rebafka and Roueff (2015). However, to our knowledge, a study on the minimax opti-
mality and the corresponding convergence rates for NPMLEs under a fully nonparametric Poisson
mixture model is still absent from the literature.

We would love to highlight again that, due to the nature of nonasymptotic analysis, all the
parameters in the model, including B, are allowed to change with N . This is a strict generalization
of the “asymptotic” setting in Section 2, where, due to the additional hardness of handling the read
depth as well as for simplifying notation and assumptions, we do not intend to establish similar
nonasymptotic results.

Our first theorem concerns with the NPMLE’s rate of convergence.

Theorem 6.1 (Upper bound of NPMLEs).

(a) Suppose there exists a universal constant c0 > 0 such that B ≤ c0 logN . Then there exists a
positive constant C = C(c0) such that for all sufficiently large N (> N0(c0)) we have

sup
Q of support [0,B]

E
{
W1(Q̂,Q)

}
≤ C B

logN
log

(
logN

B
∨ e
)
.

(b) Suppose there exist universal strictly positive constants c0, C0 and ε0 ∈ (0, 1/3) such that
B ∈ [c0 logN,C0N

1/3−ε0 ]. Then there exists a strictly positive constant C = C(ε0, c0) such
that for all sufficiently large N (> N0(c0, C0, ε0)) we have

sup
Q of support [0,B]

E
{
W1(Q̂,Q)

}
≤ C

√
B

logN
.

Our second theorem concerns with minimax lower bounds in estimating mixing distributions in
model (6.1). Combined with Theorem 6.1, it confirms the NPMLE’s minimax optimality.

Theorem 6.2 (Minimax lower bound of mixing distribution estimation).
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(a) Supposing there exists c0 > 0 such that B ≤ c0 logN ,it follows that for any N ≥ 3,

inf
Q̃

sup
Q
E{W1(Q̃,Q)} ≥ B

24e logN
log
(16c0 logN

B

)
.

(b) Supposing there exists c0 > 0 such that B ≥ c0 logN , it follows that for any N ≥ 1,

inf
Q̃

sup
Q
E{W1(Q̃,Q)} ≥ 3

40e4

√
B

c0 logN
.

In the above, the infimum and supremum are understood to be taken over all estimators and all
distributions of support [0, B]

Remark 6.1. Under fully nonparametric binomial mixture models, minimax optimal convergence
rates for NPMLEs of mixing distributions were obtained by Vinayak et al. (2019, Section 3) in
terms of the W1 distance. Under fully nonparametric binomial and Gaussian mixture models,
Tian et al. (2017, Theorem 1) and Wu and Yang (2020a, Page 1985) obtained optimal convergence
rates for moment-based estimators in terms of W1 distance; see also Polyanskiy and Wu (2020,
Remark 2). Nguyen et al. (2013, Theorems 1 and 2) upper bounded the Wasserstein distance
between mixing distributions by the divergence between the corresponding mixture distributions
under general mixture models, with normal mixture models as an example in Example 2. However,
their results cannot be applied here since Theorem 1 restricts the mixing distribution being discrete
and Theorem 2 is only for convolution mixture models.

7 Proofs

7.1 Proofs of theorems in Section 2

Proof of Theorem 2.1. To simplify notations, we temporarily drop the subject index j and the group
index k in this proof. A restatement of this theorem is then as follows:

suppose there exists an estimator Q̃ = Q̃N on [0, B] such that E{W1(Q̃,Q) | Q} → 0 as N =

Nn →∞ for almost all Q with regard to the measure Q. Then we have E{W1(h
Q̃
, hQ) | Q} →

0 as N = Nn →∞ for almost all Q with regard to the measure Q.

This proof consists of three steps. In the first step, we assume both Q and Q̃’s are ordinary
distributions with no randomness and prove that W1(Q̃,Q) → 0 implies W1(h

Q̃
, hQ) → 0. In

the second step, we temporarily forget the third-layer “population model” (2.1) and prove that
E{W1(Q̃,Q)} → 0 implies E{W1(h

Q̃
, hQ)} → 0 where the expectation is with respect to randomness

from the “measurement model” (1.1) and “expression model” (1.2). In the third step, the third-layer
“population model” (2.1) gets involved and we complete this proof.

Step 1. Suppose {Q̃} is a sequence of ordinary distributions with no randomness. To prove
that W1(Q̃,Q) → 0 implies W1(h

Q̃
, hQ) → 0, note that W1(Q̃,Q) → 0 is equivalent to Q̃ d→ Q

supplemented with E{|Q̃|} → E{|Q|} (Panaretos and Zemel, 2019, Section 2.3). Moreover, it follows
from Skorokhod’s representation theorem that we can assume Q̃ a.s.→ Q. To prove W1(h

Q̃
, hQ)→ 0,
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it suffices to prove that h
Q̃

d→ hQ and E{h
Q̃
} → E{hQ}, where the second part follows immediately

from E{h
Q̃
} = E{Q̃} and E{hQ} = E{Q}. For the first part, it follows from e−λλx ≤ (x/e)x for

all λ ∈ R+ and the dominated convergence theorem that

h
Q̃

(x) =

∫ B

0
e−λ

λx

x!
dQ̃(λ)→

∫ B

0
e−λ

λx

x!
dQ(λ) = hQ(x).

Step 2. Now suppose {Q̃} is a sequence of estimators forQ with randomness from the “measurement
model” (1.1) and “expression model” (1.2). Then it can be proved that W1(Q̃,Q)

p→ 0 implies
W1(h

Q̃
, hQ)

p→ 0 based on the result in Step 1 and the fact that a sequence converging in probability
is equivalent to that its every subsequence has a further subsequence that converges almost surely.
To prove E{W1(Q̃,Q)} → 0 implies E{W1(h

Q̃
, hQ)} → 0, it suffices to verify that E{W1(h

Q̃
, hQ)2}

is bounded which follows immediately from Proposition 7.1, or specifically,

W1(h
Q̃
, hQ) ≤ E{h

Q̃
}+ E{hQ} = E{Q̃}+ E{Q} ≤ 2B.

Step 3. Suppose QB is a set consisting of all distributions on [0, B]. For any Q0 ∈ QB with
E{W1(Q̂,Q) | Q = Q0} → 0, it follows from Step 2 that

E{W1(h
Q̃
, hQ) | Q = Q0} = E{W1(h

Q̃
, hQ0) | Q = Q0} = E{W1(h

Q̃
, hQ0)} → 0,

where the expectation in the last term E{W1(h
Q̃
, hQ0)} is with respect to the randomness from the

“measurement model” (1.1) and “expression model” (1.2) only. Then we can complete this proof by
noting that P (Q ∈ QB) = 1.

Proof of Theorem 2.2. To simplify notations, we temporarily drop the subject index j and the group
index k in this proof. A restatement of this theorem is accordingly as follows:

assume N = Nn → ∞ as n → ∞, ri = ri,n ∈ [γ0, γ1] are uniformly upper and lower
bounded by two positive universal constants γ0, γ1, and Q is supported on [0, B]. We then
have E{W1(Q̂,Q) | Q} → 0 as n→∞ for almost all Q with regard to the measure Q.

This proof consists of two steps. In the first step, we temporarily drop further the third-layer
“population model” (2.1) and prove that for each fixed distribution Q supported on [0, B] we have
E{W1(Q̂,Q)} → 0 as n→∞, where the expectation is with respect to randomness from the “mea-
surement model” (1.1) and “expression model” (1.2). In the second step, the third-layer “population
model” (2.1) gets involved and we complete the proof of the conditional W1-consistency of Q̂.

Step 1. The first step consists of three substeps. In the first substep, we prove that the set
containing all distributions which are at least δ > 0 far from Q can be covered by finite open balls
in W1 distance. In the second substep, with the aid of finite balls, we prove that, with probability
converging to 1, no distributions that are at least δ far away from Q can maximize the likelihood
function and hence the W1 distance between Q̂ and Q is less than δ. Then the W1 consistency of
Q̂ follows immediately from picking a arbitrarily small δ.
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Step 1(a). Let QB be a metric space consisting of all distributions supported on [0, B] with
the W1 distance. For any δ > 0, define

Bδ(Q) :=
{
Q′ ∈ QB : W1(Q′, Q) < δ

}
and its complement is denoted by Bcδ(Q).

In the sequel, fix ε to be a small positive number. Suppose Q1, Q2 are two distributions on [0, B]

and FQ1 , FQ2 are their distribution functions. It then follows from

e−B
∫ B

0
|FQ1 − FQ2 | ≤

∫ B

0
|FQ1(λ)− FQ2(λ)|e−λdλ ≤

∫ B

0
|FQ1 − FQ2 |

that Kiefer-Wolfowitz distance Chen (2017, page 51) and Wasserstein-1 distance induce the same
topology on QB. Hence it follows from Chen (2017, page 54) that that there exists a finite number
of distributions Qj ∈ QB, j ∈ [J ], such that

Bcδ(Q) ⊂
⋃
j∈[J ]

Bε(Qj).

Without loss of generality, it is assumed that Qj is neither a deterministic distribution at 0 (in other
words, degenerate distribution at 0) nor Q for each j ∈ [J ].

Step 1(b). Let Yj,ε(r) := log
{

1 + u
(
hr,Q(H−1

r,Q(U))/hr,Bε(Qj)(H
−1
r,Q(U))− 1

)}
, where r ∈

[γ0, γ1], u ∈ (0, 1), hr,Q(x) :=
∫ B

0 e−rλ (rλ)x

x! dQ(λ), hr,Bε(Qj)(x) := sup
Q′∈Bε(Qj)

hr,Q′(x), U is a uniform

random variable on [0, 1], and H−1
r,Q(·) is a function such that H−1

r,Q(U) ∼ hr,Q.
(i) We first prove that there exist constants εj > 0 and cj > 0 such that for all ε ≤ εj and

r ∈ [γ0, γ1] we have E{Yj,ε(r)} ≥ cj > 0.
Note that Yj,ε(r) ≥ log(1− u) and lim

ε→0+
Yj,ε(r) = Yj,0+(r) almost surely, where

Yj,0+(r) := log
{

1 + u
(
hr,Q(H−1

r,Q(U))/hr,Qj (H
−1
r,Q(U))− 1

)}
.

Since Yj,ε(r) is monotonically decreasing with respect to ε, it follows from the monotone convergence
theorem that lim

ε→0+
E{Yj,ε(r)} = E{Yj,0+(r)} for each r ∈ [γ0, γ1]. Moreover, it follows from Lemma

2.5 in Chen (2017) that E{Yj,0+(r)} > 0 for each r ∈ [γ0, γ1]. Since E{Yj,0+(r)} is a continuous
function with respect to r and r ∈ [γ0, γ1], there exists a positive constant cj such that E{Yj,0+(r)} ≥
2cj for all r ∈ [γ0, γ1]. Furthermore, since E{Yj,ε(r)} is a monotonically decreasing function with
respect to ε, then it follows from Dini’s theorem that E{Yj,ε(r)} uniformly converges to E{Yj,0+(r)}
as ε → 0+ on r ∈ [γ0, γ1] and hence there exists a εj which doesn’t depend on r such that for all
ε ≤ εj and r ∈ [γ0, γ1] we have |E{Yj,ε(r)} − E{Yj,0+(r)}| ≤ cj . Hence E{Yj,ε(r)} ≥ cj > 0 for all
ε ≤ εj and r ∈ [γ0, γ1]. Replacing r by ri,n for all ε ≤ εj we have

E{Yj,ε(ri,n)} ≥ cj > 0 for all i ∈ [Nn].

In the following arguments, set ε = min
j∈[J ]
{εj} and let Bj := Bε(Qj) for simplicity.

(ii) We then prove that there exists a constant Cj such that Var{Yj,ε(r)} ≤ Cj < ∞ for all
r ∈ [γ0, γ1].

Since hr,Bj (x) ≥ hr,Qj (x) and log{1+u(hr,Q(x)/hr,Bj (x)−1)} ≥ log(1−u), we have E{Y 2
j,ε(r)} <
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∞ or equivalently

E{
(
log{1 + u(hr,Q(Xr)/hr,Bj (Xr)− 1)}

)2} <∞,
where Xr := H−1

r,Q(U) ∼ hr,Q, as long as E{(hr,Q(Xr)/hr,Qj (Xr)− 1)2} <∞, or simply,

E{(hr,Q(Xr)/hr,Qj (Xr))
2} <∞.

To prove it, note that Qj is not a deterministic distribution at 0 and hence there exist λj ∈ (0, B]

such that FQj (λj) < 1. Then we have

hr,Q(x) ≤ e−Bγ1
(Bγ1)x

x!
and hr,Qj (x) ≥

(
1− FQj (λj)

)
e−γ0λj

(γ0λj)
x

x!
for sufficiently large x, and hence

hr,Q(x)

hr,Qj (x)
≤ eγ0λj−Bγ1(

1− FQj (λj)
) (Bγ1

γ0λj

)x
.

Then E{(hr,Q(Xr)/hr,Qj (Xr))
2} < ∞ follows immediately from the existence of the moment gen-

erating function of Poisson distribution. Since E{Y 2
j,ε(r)} is a continuous function with respect to

r and r ∈ [γ0, γ1], then there exists a uniform constant Cj such that

E{Y 2
j,ε(r)} ≤ Cj

for all r ∈ [γ0, γ1]. Replacing r by ri,n it follows that E{Y 2
j,ε(ri,n)} ≤ Cj for all i ∈ [Nn].

(iii) Suppose Xi,n, i ∈ [Nn] is a sequence of independent random variables with Xi,n ∼ hri,n,Q.

Define Zij,n := log
{

1 +u
(
hri,n,Q(Xi,n)/hri,n,Bε(Qj)(Xi,n)− 1

)}
. Note that Zij,n

d
= Yj,ε(ri,n). Built

on (i) and (ii), we have E{Zij,n} ≥ cj > 0 and Var{Zij,n} ≤ Cj < ∞ for i ∈ [Nn] and j ∈ [J ].
Therefore,

Var

 ∑
i∈[Nn]

Zij,n

 ≤ NnCj

and hence Var

{ ∑
i∈[Nn]

Zij,n

}
/N2

n → 0 as n→∞. Then it follows from Markov’s inequality that

1

Nn

∑
i∈[Nn]

(Zij,n − E{Zij,n})
p→ 0

for each j ∈ [J ]. In other words, for any positive number ξ and events

Aj,n :=

∣∣∣∣∣∣ 1

Nn

∑
i∈[Nn]

(Zij,n − E{Zij,n})

∣∣∣∣∣∣ ≤ ξ,
we have lim

n→∞
P (Aj,n) = 1. Combined with E{Zij,n} ≥ cj , we have, under Aj,n with ξ ≤ cj/2,

1

Nn

∑
i∈[Nn]

log{1 + u
(
hri,n,Q(Xi,n)/hri,n,Bj (Xi,n)− 1

)
} > cj/2,
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and hence

0 <
∑
i∈[Nn]

log{1 + u
(
hri,n,Q(Xi,n)/hri,n,Bj (Xi,n)− 1

)
}

≤ inf
Q′∈Bj

∑
i∈[Nn]

log{1 + u
(
hri,n,Q(Xi,n)/hri,n,Q′(Xi,n)− 1

)
}

for each j ∈ [J ]. Noting that Bcδ(Q) ⊂
⋃J
j=1 Bj , the last display implies that under events An :=⋂

j∈[J ]

Aj,n with ξ ≤ min
j∈[J ]

cj/2 we have

0 < inf
Q′ /∈Bδ(Q)

∑
i∈[Nn]

log{1 + u
(
hri,n,Q(Xi,n)/hri,n,Q′(Xi,n)− 1

)
},

or equivalently,

ln(uQ+ (1− u)Q′) > ln(Q′)

for all Q′ ∈ Bcδ(Q), where for each Q′ ∈ QB

ln(Q′) :=
∑
i∈[Nn]

log

∫ B

0
e−ri,nλ

(ri,nλ)Xi,n

Xi,n!
dQ′(λ).

Therefore, under events An with ξ ≤ min
j∈[J ]

cj/2, the maximum likelihood estimator Q̂ must belong to

Bδ(Q) and hence W1(Q̂,Q) ≤ δ. Since P (An)→ 1, we have P (W1(Q̂,Q) ≤ δ)→ 1, or equivalently,
W1(Q̂,Q)

p→ 0 as n→∞. It further follows fromW1(Q̂,Q) ≤ B that E{W1(Q̂,Q)} → 0 as n→∞.

Step 2. For any Q0 ∈ QB, it follows from Step 1 that

E{W1(Q̂,Q) | Q = Q0} = E{W1(Q̂,Q0) | Q = Q0} = E{W1(Q̂,Q0)} → 0,

where the expectation in the last term E{W1(Q̂,Q0)} is with respect to the randomness from the
“measurement model” (1.1) and “expression model” (1.2) only. Then it follows from P (Q ∈ QB) = 1

that E{W1(Q̂,Q) | Q} → 0 for almost all Q with regard to the measure Q.

Proof of Theorem 2.3. By the construction of the population model (2.1), under the H0 in (2.3)
Q

(k)
j ’s are independent and identically distributed. Furthermore, since the sets {r(k)

ij , i ∈ [N ]} are in-
variant with respect to j ∈ [nk] and k ∈ [K] for each i ∈ [N ], the random vectors (X

(k)
1j , . . . , X

(k)
Nj )
>’s

are independent and identically distributed. Therefore, Q̃(k)
j ’s are independent and identically dis-

tributed. As a consequence, F̃ is uniformly distributed over

F̃π :=
{
F̃ π : π ∈ all permutations of [n]→ [n]

}
and hence

P (F̃ > the 1− α quantile of F̃π |H0) ≤ α.

Note that the event

F̃ > the 1− α quantile of F̃π
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is identical to the event

P (F̃ π < F̃ | Q̃(k)
j ’s) ≥ 1− α, where probability here is with respect to the random permutation π,

and hence P (T̃α = 1|H0) ≤ α. The proof of P (T̃h,α = 1|H0) ≤ α is analogous and hence omitted.

Proposition 7.1. Suppose P and Q are two distributions supported on [0,∞).Then W1(P,Q) ≤
E{P}+ E{Q} and W1(P,Q) ≥ |E{P} − E{Q}|.

Proof. Denote distribution functions of P and Q by FP and FQ respectively. Then it follows from
the triangle inequality that W1(P,Q) =

∫∞
0 |(1− FP )− (1− FQ)| ≤

∫∞
0 (1− FP ) +

∫∞
0 (1− FQ) =

E{P}+ E{Q} and W1(P,Q) =
∫∞

0 |(1− FP )− (1− FQ)| ≥ |E{P} − E{Q}|.

Define

F :=
(
SST −

∑
k∈[K]

SSk

)/ ∑
k∈[K]

SSk, (7.1)

where

SST :=
1

n

∑
k1,k2∈[K]

∑
j1∈[nk1

],j2∈[nk2
]

W1(Q
(k1)
j1

, Q
(k2)
j2

)2 and SSk :=
1

nk

∑
j1,j2∈[nk]

W1(Q
(k)
j1
, Q

(k)
j2

)2.

For any permutation π : [n]→ [n], define

F π :=
(
SST −

∑
k∈[K]

SSπk

)/ ∑
k∈[K]

SSπk , (7.2)

where

SSπk :=
1

nk

∑
j1,j2∈[nk]

W1

(
Q

(Π
j1,k
2 )

Π
j1,k
1

, Q
(Π
j2,k
2 )

Π
j2,k
1

)2
for each k ∈ [K].

Proof of Theorem 2.4(a). Throughout this proof, unless conditioning on certain events, the prob-
ability refers to randomness from all three layers as well as the permutation. Without loss of
generality, it is assumed that Qk is non-degenerate for each k ∈ [K]. Otherwise, the proof is
analogous and omitted.

This proof consists of five steps. In the first step, we prove that if the following Equation (7.3)
is true,

lim
n→∞

P
(
F̃ > F̃ π|H1

)
= 1, (7.3)

then lim
n→∞

P (T̃α = 1 | H1) = 1 for any α ∈ (0, 1). The rest four steps are devoted to proving

Equation (7.3). Note that F̃ − F̃ π = (F̃ − F ) + (F − F π) + (F π − F̃ π), where F is defined in (7.1)
and F π is defined in (7.2). The second step proves that F̃ − F p→ 0 as n → ∞. The third step
proves that F π − F̃ π p→ 0 as n→∞. The fourth step proves that F − F π p→ some strictly positive
constant. In the fifth step, we combine results in Steps 2-4 to prove (7.3) and hence finish the proof
of Theorem 2.4(a).

In the following the notion H1 in the probability is abandoned as long as no confusion is possible.
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Step 1. Note that

P (T̃α = 1) = P
{
P (F̃ π < F̃ | Q̃(k)

j ’s) ≥ 1− α
}

= 1− P
{
P (F̃ π < F̃ | Q̃(k)

j ’s) < 1− α
}
,

P
{
P (F̃ π < F̃ | Q̃(k)

j ’s) < 1− α
}

= P
{
P (F̃ π ≥ F̃ | Q̃(k)

j ’s) > α)
}
≤
E
{
P (F̃ π ≥ F̃ | Q̃(k)

j ’s)
}

α
,

and

E
{
P (F̃ π ≥ F̃ | Q̃(k)

j ’s)
}

= P (F̃ π ≥ F̃ ) = 1− P (F̃ π < F̃ ).

Therefore, we have lim
n→∞

P{P (F̃ π < F̃ | Q̃(k)
j ’s) < 1−α} = 0 and hence lim

n→∞
P (T̃α = 1) = 1 as long

as (7.3) holds.

Step 2. In this step, we prove that F̃ − F p→ 0 as n → ∞, where the probability here refers to
randomness from all three layers.

Note that

∣∣∣F̃ − F ∣∣∣ =

∣∣∣∣∣∣∣∣
S̃ST −

∑
k∈[K]

S̃Sk∑
k∈[K]

S̃Sk
−
SST −

∑
k∈[K]

SSk∑
k∈[K]

SSk

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
SST∑

k∈[K]

SSk
− S̃ST∑

k∈[K]

SSk
+

S̃ST∑
k∈[K]

SSk
− S̃ST∑

k∈[K]

S̃Sk

∣∣∣∣∣∣∣∣ ,
where SSk and SST are defined in (7.1). It then follows from the triangle inequality that

∣∣∣F̃ − F ∣∣∣ ≤
∣∣∣∣∣∣∣
SST − S̃ST∑
k∈[K]

SSk

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
S̃ST∑

k∈[K]

S̃Sk

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑

k∈[K]

(S̃Sk − SSk)∑
k∈[K]

SSk

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
SST − S̃ST∑
k∈[K]

SSk

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
B2

1
n−1

∑
k∈[K]

S̃Sk

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑

k∈[K]

(S̃Sk − SSk)∑
k∈[K]

SSk

∣∣∣∣∣∣∣∣ , (7.4)

where 1
n−1 S̃ST ≤ B

2 follows from W1(Q̃
(k1)
j1

, Q̃
(k2)
j2

) ≤ B2 for each j1, j2, k1, k2.

Step 2(a). We first prove that
∣∣∣ S̃Sknk−1 −

SSk
nk−1

∣∣∣ p→ 0 and 1
n−1

∣∣∣S̃ST − SST ∣∣∣ p→ 0.
It follows from the triangle inequality that for each k ∈ [K]∣∣∣∣∣ S̃Sknk − 1

− SSk
nk − 1

∣∣∣∣∣ =
1

nk(nk − 1)

∣∣∣∣∣∣
∑

j1,j2∈[nk]

(
W1(Q̃

(k)
j1
, Q̃

(k)
j2

)2 −W1(Q
(k)
j1
, Q

(k)
j2

)2
)∣∣∣∣∣∣

≤ 2B

nk(nk − 1)

∑
j1,j2∈[nk]

(
W1(Q̃

(k)
j1
, Q

(k)
j1

) +W1(Q̃
(k)
j2
, Q

(k)
j2

)
)
· I(j1 6= j2)

=
4B

nk

∑
j∈[nk]

W1(Q̃
(k)
j , Q

(k)
j )

and analogously we have∣∣∣∣∣ S̃STn− 1
− SST
n− 1

∣∣∣∣∣ ≤ 4B

n

∑
k∈[K]

∑
j∈[nk]

W1(Q̃
(k)
j , Q

(k)
j ).
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Therefore,

E

{∣∣∣∣∣ S̃Sknk − 1
− SSk
nk − 1

∣∣∣∣∣
}
≤ 4B · 1

nk

∑
j∈[nk]

E
{
W1(Q̃

(k)
j , Q

(k)
j )
}

= 4B · E
{
W1(Q̃

(k)
1 , Q

(k)
1 )
}
,

where the last equality follows from Assumption 2.1. Noting that W1(Q̃
(k)
1 , Q

(k)
1 ) ≤ B and

E
{
W1(Q̃

(k)
1 , Q

(k)
1 ) | Q(k)

1

}
a.s.→ 0,

we have using

E
{
W1(Q̃

(k)
1 , Q

(k)
1 )
}

= E
[
E{W1(Q̃

(k)
1 , Q

(k)
1 )|Q(k)

1 }
]

that

E
{
W1(Q̃

(k)
1 , Q

(k)
1 )
}
→ 0 as n→∞.

Analogously, we have E
{
|S̃ST−SST |

n−1

}
→ 0 as n → ∞. Therefore, in (7.4) we have |S̃ST−SST |n−1

p→ 0

and
∑

k∈[K]

|S̃Sk−SSk|
nk−1

p→ 0.

Step 2(b). We then prove that 1
nk−1SSk

p→ some strictly positive constant.

It follows from |W1(Q
(k1)
j1

, Q
(k2)
j2

)| ≤ B and the strong law of large numbers for U-statistics
Serfling (1980, Chapter 5.4) that

1

nk − 1
SSk

a.s.→ E{W1(Q
(k)
1 , Q

(k)
2 )2}. (7.5)

If E{W1(Q
(k)
1 , Q

(k)
2 )2} = 0, then W1(Q

(k)
1 , Q

(k)
2 ) = 0 almost surely and hence Q(k)

1 = Q
(k)
2 almost

surely, which implies that Qk is degenerate.
Step 2(c). Built on Step 2(a) and Step 2(b), we have

1

nk − 1
S̃Sk =

1

nk − 1
(S̃Sk − SSk) +

1

nk − 1
SSk

p→ E
{
W1(Q

(k)
1 , Q

(k)
2 )2

}
.

Therefore, Slutsky’s theorem guarantees |F̃ −F | p→ 0, where the probability here refers to random-
ness from all three layers.

Step 3. In this step, we prove that F π − F̃ π p→ 0 as n → ∞, where the probability here refers to
randomness from all three layers as well as the permutation.

To prove it, it suffices to show that 1
nk−1

∣∣∣S̃Sπk − SSπk ∣∣∣ p→ 0 and 1
nk−1SS

π
k

p→ some strictly
positive constant since

∣∣∣F̃ π − F π∣∣∣ ≤
∣∣∣∣∣∣∣
SST − S̃ST∑
k∈[K]

SSπk

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
B2

1
n−1

∑
k∈[K]

S̃S
π

k

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑

k∈[K]

(S̃S
π

k − SSπk )∑
k∈[K]

SSπk

∣∣∣∣∣∣∣∣ , (7.6)

where SSπk and SSπT are defined in (7.2).
Step 3(a). We first prove 1

nk−1

∣∣∣S̃Sπk − SSπk ∣∣∣ p→ 0.
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To prove it, note that with similar arguments in Step 2(a) we have

E

{∣∣∣∣∣ S̃S
π

k

nk − 1
−

SSπk
nk − 1

∣∣∣∣∣
}
≤ 4B · 1

nk

∑
j∈[nk]

E

{
W1(Q̃

(Πj,k2 )

Πj,k1

, Q
(Πj,k2 )

Πj,k1

)

}
.

Let nπk,k′ represent the number of indices exchanged between group k and k′ after the specific
permutation π. Note that nπk,k′ = nπk′,k and

∑
k′
nπk,k′ = nk. Then, with the aid of the notations

{nπk,k′}, it follows that∑
j∈[nk]

E

{
W1(Q̃

(Πj,k2 )

Πj,k1

, Q
(Πj,k2 )

Πj,k1

)
∣∣∣π} =

∑
k′∈[K]

∑
j∈[nπ

k,k′ ]

E
{
W1(Q̃

(k′)
j , Q

(k′)
j )

∣∣∣π}
=

∑
k′∈[K]

nπk,k′E
{
W1(Q̃

(k′)
1 , Q

(k′)
1 )

}
and hence

∑
j∈[nk]

E


W1(Q̃

(Πj,k2 )

Πj,k1

, Q
(Πj,k2 )

Πj,k1

)

nk

 =
∑
k′∈[K]

E
{
W1(Q̃

(k′)
1 , Q

(k′)
1 )

}
E
{nπk,k′
nk

}
=
∑
k′∈[K]

E

{
W1(Q̃

(k′)
1 , Q

(k′)
1 )

K

}
.

Therefore, it follows from E
{
W1(Q̃

(k′)
1 , Q

(k′)
1 )

}
→ 0 for each k ∈ [K] that E

{∣∣∣ S̃Sπknk−1 −
SSπk
nk−1

∣∣∣}→ 0.

Step 3(b). We then prove 1
nk−1SS

π
k

p→ some strictly positive constant.

To prove it, let X d
= Y denote that the two random variables X,Y are identically distributed

and note that

SSπk
nk − 1

d
=
∑
k′∈[K]

∑
j1,j2∈[nπ

k,k′ ]

W1(Q
(k′)
j1

, Q
(k′)
j2

)2

nk(nk − 1)︸ ︷︷ ︸
(a)

+
∑

k′1 6=k′2∈[K]

∑
j1∈[nπ

k,k′1
],j2∈[nπ

k,k′2
]

W1(Q
(k′1)
j1

, Q
(k′2)
j2

)2

nk(nk − 1)
. (7.7)

(i) We first prove that the variance of (a) converges to 0.
Note that the variance of (a) equals to

Var

E


∑
j1,j2∈[nπ

k,k′ ]

W1(Q
(k′)
j1

, Q
(k′)
j2

)2

nk(nk − 1)

∣∣∣π

+ E

Var


∑

j1,j2∈[nπ
k,k′ ]

W1(Q
(k′)
j1

, Q
(k′)
j2

)2

nk(nk − 1)

∣∣∣π

 ,

where the first term equals to

Var

{
nπk,k′(n

π
k,k′ − 1)

nk(nk − 1)
E{W1(Q

(k′)
1 , Q

(k′)
2 )2}

}
≤ B4 ·Var

{
nπk,k′(n

π
k,k′ − 1)

nk(nk − 1)

}
.

For the second term, note that

Var


∑

j1 6=j2∈[nπ
k,k′ ]

W1(Q
(k′)
j1

, Q
(k′)
j2

)2
∣∣∣ π

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=
∑

j1 6=j2∈[nπ
k,k′ ]

∑
j′1 6=j′2∈[nπ

k,k′ ]

Cov
{
W1(Q

(k′)
j1

, Q
(k′)
j2

)2,W1(Q
(k′)
j′1

, Q
(k′)
j′2

)2
}

≤ B4
∑

j1 6=j2∈[nπ
k,k′ ]

∑
j′1 6=j′2∈[nπ

k,k′ ]

I
(
At least two of {j1, j2, j′1, j′2} are identical.

)
≤ B4 · 2nπk,k′(nπk,k′ − 1)2.

Therefore, the variance of (a) is upper bounded by

2B4

(nk(nk − 1))2

[
Var{nπk,k′(nπk,k′ − 1)}+ E

{
(nπk,k′)

3
} ]
→ 0,

where the convergence follows from nπk,k′/nk
p→ 1/K, nπk,k′/nk ≤ 1, the dominated convergence

theorem such that

E
{

(nπk,k′)
3
}/

(nk(nk − 1))2 → E{0} = 0,

and

Var{nπk,k′(nπk,k′ − 1)}
(nk(nk − 1))2 = E


(
nπk,k′(n

π
k,k′ − 1)

nk(nk − 1)

)2
−

(
E

{
nπk,k′(n

π
k,k′ − 1)

nk(nk − 1)

})2

→ 1

K4
− 1

K4
= 0.

To prove nπk,k′/nk
p→ 1/K, note that E{nπk,k′/nk} = 1/K and Var{nπk,k′/nk} = Var{nπ1,1/n1} =

n2
1(n−n1)2

n2
1n

2(n−1)
→ 0 (cf. Chapuy (2007, page 460)).

(ii) We then prove that the expectation of (a) converges to E
{
W1(Q

(k′)
1 , Q

(k′)
2 )2

}
/K2. For this,

we have

E{(a)} = E

 1

nk(nk − 1)

∑
j1,j2∈[nπ

k,k′ ]

E
{
W1(Q

(k′)
j1

, Q
(k′)
j2

)2|π
}

= E

{
nπk,k′(n

π
k,k′ − 1)

nk(nk − 1)
E
{
W1(Q

(k′)
1 , Q

(k′)
2 )2

}}
,

which converges to E
{
W1(Q

(k′)
1 , Q

(k′)
2 )2

}
/K2 by the dominated convergence theorem.

(iii) Built on (i) and (ii), it follows fromMarkov’s inequality that (a)
p→ E

{
W1(Q

(k′)
1 , Q

(k′)
2 )2

}
/K2.

Analogously, we can prove that the second term in (7.7) converges to a constant in probability, i.e.,∑
k′1 6=k′2∈[K]

1

nk(nk − 1)

∑
j1∈[nπ

k,k′1
],j2∈[nπ

k,k′2
]

W1(Q
(k′1)
j1

, Q
(k′2)
j2

)2 p→
∑

k′1 6=k′2∈[K]

E{W1(Q
(k′1)
1 , Q

(k′2)
1 )2}

K2
.

As a result, we have

1

nk − 1
SSπk

p→
∑
k′∈[K]

E
{
W1(Q

(k′)
1 , Q

(k′)
2 )2

}
K2

+
∑

k′1 6=k′2∈[K]

E{W1(Q
(k′1)
1 , Q

(k′2)
1 )2}

K2
> 0. (7.8)

Step 4. In this step we prove that F −F π p→ some strictly positive constant, where the probability
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here refers to randomness from all three layers and permutations.
To prove it, note that

F − F π =
SST∑

k∈[K]

SSk
− SST∑

k∈[K]

SSπk
=

1

n− 1
SST

 1
1

n−1

∑
k∈[K]

SSk
− 1

1
n−1

∑
k∈[K]

SSπk

 .

Step 4(a). We first prove that 1
n−1SST

p→ some strictly positive constant. Note that

1

n− 1
SST =

1

n(n− 1)

∑
k1,k2∈[K]

∑
j1∈[nk1

],j2∈[nk2
]

W1

(
Q

(k1)
j1

, Q
(k2)
j2

)2

=
∑

k1,k2∈[K]

nk1nk2

n(n− 1)

1

nk1nk2

∑
j1∈[nk1

],j2∈[nk2
]

W1

(
Q

(k1)
j1

, Q
(k2)
j2

)2

p→ 1

K2

∑
k1,k2∈[K]

E
{
W1(Q

(k1)
1 , Q

(k2)
2 )2

}
> 0,

which follows from the strong law of large numbers for U-statistics Serfling (1980, Chapter 5.4).
Step 4(b). Build on Step 3(a), (7.5), and (7.8), it suffices to prove that

∑
k∈[K]

1
n−1(SSk−SSπk )

p→

some strictly negative constant. It follows from (7.5) and (7.8) that∑
k∈[K]

1

nk − 1
(SSk − SSπk )

p→
(

1− 1

K

) ∑
k∈[K]

E{W1(Q
(k)
1 , Q

(k)
2 )2} −

∑
k′1 6=k′2∈[K]

E{W1(Q
(k′1)
1 , Q

(k′2)
1 )2}

K

= (K − 1)

 1

K

∑
k∈[K]

E{W1(Q
(k)
1 , Q

(k)
2 )2} −

∑
k′1 6=k′2∈[K]

E{W1(Q
(k′1)
1 , Q

(k′2)
1 )2}

K(K − 1)

 < 0,

where the last inequality follows from H1 and hence∑
k∈[K]

1

n− 1
(SSk−SSπk )

p→ K − 1

K

 1

K

∑
k∈[K]

E{W1(Q
(k)
1 , Q

(k)
2 )2} −

∑
k′1 6=k′2∈[K]

E{W1(Q
(k′1)
1 , Q

(k′2)
1 )2}

K(K − 1)

 ,

which is a strictly negative constant.

Step 5. Building on the previous three steps, we have established that F̃ − F̃ π p→ C, where C is a
strictly positive constant. Accordingly, we have limn→∞ P (F̃ > F̃ π | H1) = 1.

Proof of Theorem 2.4(b). Noting Theorem 2.1 and Proposition 7.1, this is analogous to the proof
of Theorem 2.4(a) and hence omitted.

7.2 Proof of theorems in Section 3

Proof of Theorem 3.1. We focus on VDM. After understanding the proof of VDM, arguments for
VEM and ISDM are straight-forward and hence omitted.
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The proof of VDM largely remains the same as Böhning (1982) and we include it here only for
the completeness of this paper. This proof consists of four steps. In the first step, we prove the
existence of Q̂. In the second step, we prove an important property (7.9) for proving Φ(GL)→ Φ(Q̂)

as L→∞ if this algorithm doesn’t stop. In the third step, we complete the proof in the case that
this algorithm doesn’t stop. In the fourth step, we complete the proof in the case that algorithm
does stop at some L.
Step 1. This step gives a proof of the existence of Q̂, which is an analogue of Simar (1976, Section
3.1).

Let Q̄B be the set of all sub-distributions (total mass less or equal to 1) on [0, B] and let
Γ̄N := {µ(Ḡ)|Ḡ ∈ Q̄B}, where Ḡ 7→ µ(Ḡ) :=

(
µ1(Ḡ), . . . , µN (Ḡ)

)
and

Ḡ 7→ µi(Ḡ) :=

∫ B

0
exp(−λri)(λri)XidḠ(λ) for i ∈ [N ] and Ḡ ∈ Q̄B.

We claim that Γ̄N is convex and compact. Convexity is obvious. Compactness follows from the
weak compactness of Q̄B, boundedness and continuity of λ 7→ exp(−λri)(λri)Xi on [0, B], and
Helly–Bray theorem, see Simar’s arguments for further details. It further follows from the concavity
of (µ1, . . . , µN ) 7→ Ψ(µ1, . . . , µN ) := 1

N

∑N
i=1 logµi on Γ̄N that there exists a unique maximizer

(µ̂1, . . . , µ̂N ) of Ψ on Γ̄N . By the construction of Γ̄N , there exists a sub-distribution Ḡmax ∈ Q̄B such
that (µ̂1, . . . , µ̂N ) = (µ1(Ḡmax), . . . , µN (Ḡmax)). The proof of that Ḡmax is actually a distribution
follows from exactly same arguments by Simar (1976, Page 1202). Now we complete the proof of
the existence of Q̂.
Step 2. Let QB be the set of all distributions on [0, B] and let δλ be the deterministic distribution
at λ ∈ [0, B]. Since we have Φ(G) > −∞ for each G ∈ QB\{δ0}, we can define the following
directional directive

Φ′(G, δλ) := lim
ε→0+

ε−1
{

Φ{(1− ε)G⊕ εδλ} − Φ(G)
}

=
1

N

∑
i∈[N ]

e−λri(λri)
Xi

µi(G)
− 1

for G ∈ QB\{δ0} and λ ∈ [0, B].
In the second step, we prove that for all ν > 0, α ∈ R there exists ε0 = ε0(ν, α) ∈ (0, 1) such

that

Φ′(G, δλ) ≥ ν implies Φ{(1− ε)G⊕ εδλ} − Φ(G) ≥ εν/2 (7.9)

for all ε ∈ [0, ε0(ν, α)], all G ∈ ∆α := {G ∈ QB|Φ(G) ≥ α}, and all λ ∈ [0, B].
Ψ,µ, Q̄B and Γ̄N are defined in Step 1. Since Ψ is continuously differentiable on Γ̄N\{0}, it

follows from the mean value theorem that

Φ{(1− ε)G⊕ εδλ} − Φ(G) = Ψ{(1− ε)µ(G) + εµ(δλ)} −Ψ(µ(G))

= ε∇Ψ {(1− ξε)µ(G) + ξεµ(δλ)}T µ(δλ)− 1,

where ∇Ψ denotes the gradient of Ψ, for some ξ ∈ [0, 1]. Therefore,

Φ{(1− ε)G⊕ εδλ} − Φ(G)− εΦ′(G, δλ) = ε
{
∇Ψ {(1− ξε)µ(G) + ξεµ(δλ)} − ∇Ψ(µ(G))

}T
µ(δλ).

Define Lα′ := {µ ∈ Γ̄N : Ψ ≥ α′} for α′ ∈ R. Note that Lα′ is a compact set, on which ∇Ψ is
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uniformly continuous, for α′ = α−1. Since µ(G) ∈ Lα, we can find a sufficiently small ε0 = ε0(α, ν)

such that for all ε ∈ [0, ε0] we have (1− ξε)µ(G) + ξεµ(δλ) ∈ Lα−1 and

‖∇Ψ {(1− ξε)µ(G) + ξεµ(δλ)} − ∇Ψ(µ(G))‖ ≤ ν/(2S),

where ‖ · ‖ denotes the Euclidean norm and S := supµ∈Γ̄N
‖µ‖. Therefore we have

|Φ{(1− ε)G⊕ εδλ} − Φ(G)− εΦ′(G, δλ)| ≤ εν/(2S) · S = εν/2. (7.10)

If the claim doesn’t hold, i.e. Φ{(1 − ε)G ⊕ εδλ} − Φ(G) < εν/2, it follows from −Φ′(G, δλ) ≤ −ν
that

Φ{(1− ε)G⊕ εδλ} − Φ(G)− εΦ′(G, δλ) < εν/2− εν = −εν/2,

which contradicts (7.10).
Step 3. In this step, we assume that VDM doesn’t stop and we have Φ(GL)→ Φ(Q̂) as L→∞.

Note that Φ(GL) is monotonically increasing and suppose limL→∞Φ(GL) = Φ+. If Φ+ < Φ(Q̂),
then we have

Φ′(GL, δλmax) = max
λ∈[0,B]

Φ′(GL, δλ) ≥ Φ′(GL, Q̂) ≥ Φ(Q̂)− Φ(GL) ≥ Φ(Q̂)− Φ+ ≥ ν > 0,

for some ν > 0, where the first inequality follows from Simar (1976, Page 1204) and the second
inequality follows from the concavity of ε 7→ Φ((1− ε)GL + εQ̂) with ε ∈ [0, 1]. Then it follows from
the claim in Step 2 that

Φ(GL+1)− Φ(GL) ≥ Φ{(1− ε0)GL ⊕ ε0δλmax} − Φ(GL) ≥ νε0/2 > 0,

which contradicts limL→∞Φ(GL) = Φ+.
Step 4. In this step, we prove that if VDM stops at some L, then Φ(GL) = Φ(Q̂).

If Φ(GL) < Φ(Q̂), we then have

max
λ∈[0,B]

Φ′(GL, δλ) ≥ Φ(Q̂)− Φ(GL) > 0,

which contradicts the criterion for stopping this algorithm.

7.3 Proof of theorems in Section 6

Proof of Theorem 6.1(a). This proof consists of two steps, similar to Section 4 in Vinayak et al.
(2019). In the first step, we prove that W1(Q, Q̂) can be upper bounded by three parts, see (7.11).
In the second step, we upper bound these three parts separately with the help of Lemma A.1,
Lemma A.2 and Proposition A.2 and complete this proof.

Step 1. For x = 0, 1, . . ., let x 7→ hobsQ (x) denote the sample proportion, i.e. hobsQ (x) :=
∑N

i=1 I(x =

Xi)/N, where I(·) is an indicator function. Recall that W1(Q, Q̂) = sup`∈Lip1

∫ B
0 `d(Q− Q̂), where

Lip1 represents all 1-Lipschitz functions on [0, B] and ` is one of those 1-Lipschitz functions. Without
loss of generality, it is assumed that `(0) = 0. The idea is to use the following function

λ 7→ ̂̀(λ) :=
∞∑
x=0

bx
λxe−λ

x!
, where bx ∈ R and λ ∈ [0, B],

to approximate the 1-Lipschitz function λ 7→ `(λ) and upper bound W1(Q, Q̂) by three parts. It
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follows from a straight-forward algebra that∫ B

0
`(λ)d

(
Q(λ)− Q̂(λ)

)
=

∫ B

0

(
`(λ)− ̂̀(λ)

)
d
(
Q(λ)− Q̂(λ)

)
+

∫ B

0

∞∑
x=0

bx
λxe−λ

x!
d
(
Q(λ)− Q̂(λ)

)
≤ 2

∥∥∥`− ̂̀∥∥∥
∞

+
∞∑
x=0

bx

(
hQ(x)− hobsQ (x)

)
+
∞∑
x=0

bx

(
hobsQ (x)− h

Q̂
(x)
)
,

where ‖`− ̂̀‖∞ := supλ∈[0,B] |`(λ)− ̂̀(λ)|, and hence

W1(Q, Q̂) ≤ sup
`∈Lip(1)

(
2
∥∥∥`− ̂̀∥∥∥

∞
+

∞∑
x=0

bx

(
hQ(x)− hobsQ (x)

)
+

∞∑
x=0

bx

(
hobsQ (x)− h

Q̂
(x)
))

. (7.11)

Step 2. It follows from Lemma A.1 and Lemma A.2 that for an arbitrary δ ∈ (0, 1/2) and an
arbitrary ε ∈ (0, 1) there exists constants N(ε) and C(ε) depending only on ε such that the sum of

the last two terms in (7.11) is upper bounded by C(ε) maxx≥0 |bx|
√

B∨1
N1−εδ1+ε for all N ≥ N(ε) with

probability at least 1− 2δ.
Step 2(a). Suppose c0 ≤ min {

√
ec/C2, 0.001}, where c = 1/8 and C2 is a universal con-

stant specified later. It follows from Proposition A.2(a) that `(λ) can be approximated by ̂̀(λ) =∑k
x=0 bx

λxe−λ

x! with an uniform approximation error of C1B/k with maxx |bx| ≤ C1 (
√
ek/B)

k for
k ≥ 4(B ∨ 1), where C1 > 1 is a universal constant. Hence we have

W1(Q, Q̂) ≤ 2C1
B

k
+ C1C(ε)

(√
ek

B

)k√
B ∨ 1

N1−ε
1

δ1+ε
,

for N ≥ N(ε) and k ≥ 4(B ∨ 1) with probability at least 1 − 2δ. Taking k = k(N,B) satisfying
(
√
ek/B)

k
= N c for c = 1/8, it follows that

W1(Q, Q̂) ≤ 2C1B/k + C1C(ε)N c+ε/2−1/2
√
B/δ1+ε. (7.12)

To verify k(N,B) ≥ 4(B ∨ 1), note that (
√
ek/B)

k
= N c is equivalent to

log
(√
ek/B

)
exp{log

(√
ek/B

)
} = (

√
ec logN)/B.

It further follows from (
√
ec logN)/B > 0 that k(N,B), as the solution of (

√
ek/B)k = N c, can

be written using the Lambert W function, i.e. k(N,B) = B√
e

exp
(
W
(√

ec logN
B

))
, where W is the

Lambert W function. It follows from the expansion of W (see Wiki of Lambert W function),

W (x) = log x− log log x+ o(1), as x→∞,

that there exists a universal constant C2 > 0 such that

exp(W (x)) ≥ 1

2

x

log x
, for x ≥ C2.

It then follows from that B ≤ c0 logN and c0 ≤
√
ec/C2 that

√
ec logN

B
≥
√
ec logN

c0 logN
≥ C2

and hence

k(N,B) =
B√
e

exp

(
W

(√
ec logN

B

))
≥ B

2
√
e

√
ec logN
B

log
√
ec logN
B

≥ c

2

logN

log logN
B

. (7.13)

30



It further follows from B ≤ c0 logN with c0 ≤ 0.001 that
k(N,B)

B
≥ c

2

logN

B
/ log

logN

B
≥ 1

16

1000

log 1000
≥ 4.

If c
2

logN

log logN
B

≥ 4 doesn’t hold, then E{W1(Q, Q̂)} ≤ B ≤ 64B
logN log

(
logN
B ∨ e

)
and hence Theo-

rem 6.1(a) is trivial. Therefore without loss of generality we assume that c
2

logN

log logN
B

≥ 4 and hence

k(N,B) ≥ 4. As a consequence, we have k(N,B) ≥ 4(B ∨ 1).
Combining (7.12) with (7.13) and letting ε = 1/4, we have

W1(Q, Q̂) ≤ 32C1
B log logN

B

logN
+ C1C(ε)|ε=1/4 ·N−1/4

√
B ∨ 1

δ1+ε
,

where C(ε)|ε=1/4 means the value of the function ε 7→ C(ε) at 1/4. Therefore, for an arbitrary
δ ∈ (0, 1/2), there exists a universal constant C3 such that for sufficiently large N we have

W1(Q, Q̂) ≤ C3
B

logN

(
log

logN

B

)
1

δ5/8
,

with probability at least 1− 2δ. Therefore, for sufficiently large N we have

E{W1(Q, Q̂)} ≤ 5C3
B

logN
log

logN

B
≤ 5C3

B

logN
log

(
logN

B
∨ e
)
.

Step 2(b). Suppose c0 > min
{√

ec
C2
, 0.001

}
. Then forB ∈ [min {

√
ec/C2, 0.001} logN, c0 logN ],

it follows from Theorem 6.1(b) that E{W1(Q, Q̂)} ≤ C4

√
B/ logN ≤ C4

√
c0, where C4 is a uni-

versal constant. On the other hand, in this case B
logN log

(
logN
B ∨ e

)
≥ min {

√
ec/C2, 0.001} and

hence

E{W1(Q, Q̂)} ≤ max

{
5C3,

C4
√
c0

min {
√
ec/C2, 0.001}

}
B

logN
log

(
logN

B
∨ e
)

holds for all B ≤ c0 logN .

Proof of Theorem 6.1(b). Since B ≥ c0 logN , we have B ≥ 1 for sufficiently large N . It follows
from Step 1 in the proof of Theorem 6.1(a), Lemma A.1 and Lemma A.2 that for an arbitrary
δ ∈ (0, 1/2) and an arbitrary ε ∈ (0, 1) there exist constants N(ε) and C(ε) depending only on ε

such that the sum of the last two terms in (7.11) is upper bounded by C(ε) maxx≥0 |bx|
√

B
N1−εδ1+ε

for all N ≥ N(ε) with probability at least 1− 2δ.
If c0 ≥ 100, it follows further from Proposition A.2(b) that for sufficiently small ε there exists a

constant C1 = C1(ε) such that

W1(Q, Q̂) ≤ C1

(√
B

logN
+B3/2N−1/2+2ε

√
1

δ1+ε

)
,

with probability at least 1−2δ. Since B3 ≤ C3
0N

1−3ε0 , then it follows from choosing ε = (ε0/2)∧0.01

that there exists a constant C2 = C2(ε0) such that

W1(Q, Q̂) ≤ C2

√
B

logN

1

δ1+ε
and hence E{W1(Q, Q̂)} ≤ C3

√
B

logN
,
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where C3 = C3(ε0) is a constant.
If c0 < 100, a 1-Lipschitz function on [0, B] can also be viewed as a Lipschitz function on

[0, 100 logN ] and hence it follows from letting B = 100 logN in Proposition A.2(b) that for suffi-
ciently small ε there exists a constant C4 = C4(ε) such that with probability 1− 2δ

W1(Q, Q̂) ≤ C4

(
1 +
√
BN−1/2+2ε logN ·

√
1

δ1+ε

)
≤ C4

(
1 +

√
C0N

−1/3+2ε logN ·
√

1

δ1+ε

)
.

Therefore it follows from letting ε = 0.01 that for sufficiently large N

E{W1(Q, Q̂)} ≤ 2C4 ≤
2C4√
c0

√
B

logN
,

where the last inequality follows from B ≥ c0 logN .

Proof of Theorem 6.2(a). Suppose a ≥M ≥ 0 are constants and P and Q are two random variables
supported on [a−M,a+M ] with E{P j} = E{Qj}, 0 ≤ j ≤ L. Existence of P and Q is guaranteed
by Proposition 4.3 in Vinayak et al. (2019).

For 0 < B ≤ c0 logN , setting a = C1B, M = B and

(L+ 1)/2 = Be2/(2C1) · exp(W (4C1 log(N)/(e2B))),

where W (·) is the Lambert W function, C1 = max{1, 4e2c0, C2c0e
2/4, C3c0e

2/4} and C2, C3 are
universal positive constants specified later. Since W (x) = log x− log log x + o(1) as x → ∞, there
exists a universal constant C2 such that for x ≥ C2 we have W (x) ≥ 1

2 log x. Therefore, it follows
from

4C1
logN

e2B
≥ 4C2c0

e2

4

logN

e2B
≥ 4C2c0

e2

4

logN

e2c0 logN
= C2

that

L+ 1 =
Be2

C1
· exp{W (4C1 log(N)/(e2B))} ≥ Be2

C1

√
4C1

logN

e2B
≥ Be2

C1

√
4C1

logN

e2c0 logN
≥ 4Be2

C1
.

By (2eM)2/a = (2eB)2/(C1B) = 4e2B/C1, it follows that L + 1 ≥ (2eM)2/a. Hence it follows
from Proposition A.3 that

TV(P,Q) ≤ 2

(
eB√

C1B(L+ 1)

)L+1

= 2

(
e2B

2C1(L+ 1)/2

)L+1
2

= 2N−2,

where the last equality follows from the definition of the Lambert W function (see the proof of
Theorem 6.1(a) for details). It follows from the LeCam minimax lower bound that for N ≥ 3

inf
Q̃

sup
Q
E{W1(Q, Q̃)} ≥ 1

2
W1(P,Q)(1− TV(PN , QN )) ≥ 1

2
W1(P,Q)

(
1− 2NN−2

)
≥ 1

6
W1(P,Q).

On the other hand, it follows from Proposition 4.3 in Vinayak et al. (2019) that W1(P,Q) ≥
2M/(2L) = B/L. Since W (x) = log x− log log x+ o(1) as x→∞, there exists a universal constant
C3 such that for x ≥ C3 we have W (x) ≤ 1 + log x− log log x. Therefore, it follows from

4C1
logN

e2B
≥ 4C3c0

e2

4

logN

e2B
≥ 4C3c0

e2

4

logN

e2c0 logN
= C3
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that

L ≤ Be2

C1
· exp{W (4C1 log(N)/(e2B))} ≤ Be3

C1

4C1 logN

e2B
/ log

4C1 logN

e2B
= 4e logN/ log

4C1 logN

e2B
.

Therefore,

inf
Q̃

sup
Q
E{W1(Q, Q̃)} ≥ 1

6
W1(P,Q) ≥ 1

6

B

4e logN
log

4C1 logN

e2B
≥ B

24e logN
log

16c0 logN

B
.

This completes the proof.

Proof of Theorem 6.2(b). Suppose a ≥M ≥ 0 are constants and P and Q are two random variables
supported on [a−M,a+M ] with E{P j} = E{Qj}, 0 ≤ j ≤ L. Existence of P and Q is guaranteed
by Proposition 4.3 in Vinayak et al. (2019).

For B ≥ c0 logN , setting a = c1B/
√
c0, L = logN and M = c1

√
B logN with c1 = 1/(4e4√c0).

Note that

a

M
=

c1B/
√
c0

c1
√
B logN

=

√
B

c0 logN
≥ 1

and
(2eM)2

a
=

4e2c2
1B logN

c1B/
√
c0

=
√
c04e2c1 logN =

√
c04e2

4e4√c0
logN =

1

e2
logN ≤ 1 + logN = L+ 1.

Therefore, it follows from the LeCam minimax lower bound and Proposition A.3 that

inf
Q̃

sup
Q
E{W1(Q, Q̃)} ≥ 1

2
W1(P,Q)(1− TV(PN , QN ))

≥ 1

2
W1(P,Q)

1− 2N

(
ec1
√
B logN√

c1B(1 + logN)/
√
c0

)1+logN


≥ 1

2
W1(P,Q)

(
1− 1

e
N− log 2

)
≥ 3

10
W1(P,Q).

On the other hand, it follows from Proposition 4.3 in Vinayak et al. (2019) that

W1(P,Q) ≥ 2M

2L
=
c1
√
B logN

logN
= c1

√
B

logN
.

Hence

inf
Q̃

sup
Q
E{W1(Q, Q̃)} ≥ 3c1

10

√
B

logN
≥ 3

40e4√c0

√
B

logN
.

This completes the proof.
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A Auxiliary proofs

Lemma A.1. Suppose Q is a distribution on [0, B] and {Xi, i ∈ [N ]} are N observations generated
from hQ defined in (6.1). For an arbitrary δ ∈ (0, 1), the following inequality∣∣∣∣∣

∞∑
x=0

bx

(
hobsQ (x)− hQ(x)

)∣∣∣∣∣ ≤ max
x
|bx|
√

log(2/δ)

2N
,

holds with probability at least 1− δ, where bx ∈ R and hobsQ =
∑N

i=1 I(x = Xi)/N .

Proof of Lemma A.1. By noting that E{hobsQ (x)} = hQ(x), this proof is basically an application of
McDiarmid’s inequality.

Let φ : RN 7→ R be a function of (y1, . . . , yN ) ∈ RN such that

φ(y1, . . . , yN ) :=
1

N

N∑
i=1

∞∑
x=0

bxI(x ∈ {yi}).

Since for any y1, . . . , yN , yi′ ∈ R

|φ(y1, . . . , yi, . . . , yN )− φ(y1, . . . , yi′ , . . . , yN )| ≤ max
x≥0
|bx|

1

N
,

it follows from McDiarmid’s inequality that for all ε > 0

P (|φ(X1, . . . , XN )− E{φ(X1, . . . , XN )}| ≥ ε) ≤ 2 exp

(
−2Nε2

maxx≥0 |bx|2

)
,

or equivalently,

P (|
∞∑
x=0

bx

(
hobsx − hQ(x)

)
| ≥ ε) ≤ 2 exp

(
−2Nε2

maxx≥0 |bx|2

)
by noting that

φ(X1, . . . , XN )− E{φ(X1, . . . , XN )} =
∞∑
x=0

bx

(
hobsx − hQ(x)

)
.

Hence for an arbitrary δ ∈ (0, 1) the following inequality∣∣∣∣∣
∞∑
x=0

bx

(
hobsQ (x)− hQ(x)

)∣∣∣∣∣ ≤ max
x
|bx|
√

log(2/δ)

2N

holds with probability at least 1− δ.

Lemma A.2. Suppose Q is a distribution on [0, B] and {Xi, i ∈ [N ]} is a random sample from hQ
defined in (6.1). Q̂ defined in (6.2) is a NPMLE of the mixing distribution Q. For an arbitrary
δ ∈ (0, 1) and an arbitrary ε ∈ (0, 1), there exist constants N(ε) > 0 and C = C(ε) > 0 such that
for all N ≥ N(ε), ∣∣∣∣∣

∞∑
x=0

bx

(
hobsQ (x)− h

Q̂
(x)
)∣∣∣∣∣ ≤ C max

x≥0
|bx|
√

B ∨ 1

N1−εδ1+ε

holds with probability at least 1− δ.
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Proof of Lemma A.2. Let hobsQ :=
(
hobsQ (0), hobsQ (1), . . .

)T
, h

Q̂
:=
(
h
Q̂

(0), h
Q̂

(1), . . .
)T

and hQ :=

(hQ(0), hQ(1), . . .)T . For simplicity, hobsQ , h
Q̂

and hQ also represent distributions with respect to
corresponding probability mass functions x 7→ hobsQ (x), x 7→ h

Q̂
(x) and x 7→ hQ(x).

This proof consists of two steps. In the first step, we prove that
∣∣∣∑∞x=0 bx

(
hobsQ (x)− h

Q̂
(x)
)∣∣∣

can be upper bounded by KL(hobsQ ,hQ), where KL is the Kullback–Leibler divergence. In the second
step, we upper bound KL(hobsQ ,hQ) by truncation arguments.

Step 1. It follows from the triangle inequality that∣∣∣∣∣
∞∑
x=0

bx

(
hobsQ (x)− h

Q̂
(x)
)∣∣∣∣∣ ≤ max

x≥0
|bx|

∞∑
x=0

∣∣∣hobsQ (x)− h
Q̂

(x)
∣∣∣ = max

x≥0
|bx|‖hobsQ − h

Q̂
‖1,

where ‖hobsQ −hQ̂‖1 is the total variation distance between distributions hobsQ and h
Q̂
. Then it follows

from Pinsker’s inequality (see Proposition A.1) that

‖hobsQ − h
Q̂
‖1 ≤

√
1

2
·KL(hobsQ ,h

Q̂
),

where KL is the Kullback–Leibler divergence, and hence∣∣∣∣∣
∞∑
x=0

bx

(
hobsQ (x)− h

Q̂
(x)
)∣∣∣∣∣ ≤ max

x≥0
|bx|
√

1

2
·KL(hobsQ ,h

Q̂
) ≤ max

x≥0
|bx|
√

1

2
·KL(hobsQ ,hQ),

by noting that maximum likelihood estimators maximize likelihood functions.

Proposition A.1. (Pinsker’s Inequality, see Cover and Thomas (2006).) For discrete distributions
P and Q, it follows that

KL(P,Q) ≥ 2‖P −Q‖21,

where KL(P,Q) is the Kullback–Leibler divergence between P and Q, and ‖P − Q‖1 is the total
variation distance between P and Q.

Step 2. Let {Ti := XiI(Xi ≤ b2Bc) + (b2Bc+ 1)I(Xi ≥ b2Bc+ 1), i ∈ [N ]} be a truncated sample
of {Xi, i ∈ [N ]}, where b2Bc denotes the larger integer that is less or equal to 2B. Let tQ be the
probability mass function of T1 and let tobsQ be the sample version of tQ, i.e. for x = 0, . . . , b2Bc+ 1

x 7→ tQ(x) := P (T1 = x) and x 7→ tobsQ (x) :=
1

N

N∑
i=1

I(Ti = x).

Note that tQ(x) = hQ(x), tobsQ (x) = hobsQ (x) for x = 0, . . . , b2Bc and tQ(b2Bc+1) =
∑

x≥b2Bc+1 hQ(x),
tobsQ (b2Bc+ 1) =

∑
x≥b2Bc+1 h

obs
Q (x) and hence

KL(hobsQ ,hQ) =
∑
x≥0

hobsQ (x) log
hobsQ (x)

hQ(x)

= KL(tobsQ , tQ)− tobsQ (b2Bc+ 1) log
tobsQ (b2Bc+ 1)

tQ(b2Bc+ 1)
+

∑
x≥b2Bc+1

hobsQ (x) log
hobsQ (x)

hQ(x)
,

where tobsQ := (tobsQ (0), . . . , tobsQ (b2Bc + 1)) and tQ := (tQ(0), . . . , tQ(b2Bc + 1)) are also viewed as
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distributions with respect to corresponding probability mass functions x 7→ tQ(x) and x 7→ tobsQ (x).

If tobsQ (b2Bc + 1) = 0, then tobsQ (b2Bc + 1) log
tobsQ (b2Bc+1)

tQ(b2Bc+1) = 0. If not, it follows from log(1 + x) ≤
x for x > 0 that

−tobsQ (b2Bc+ 1) log
tobsQ (b2Bc+ 1)

tQ(b2Bc+ 1)
≤ tQ(b2Bc+ 1)− tobsQ (b2Bc+ 1) =

∑
x≥b2Bc+1

(hQ(x)− hobsQ (x)).

Analogously, it can be proved that∑
x≥b2Bc+1

hobsQ (x) log
hobsQ (x)

hQ(x)
≤

∑
x≥b2Bc+1

(hobsQ (x)− hQ(x))2

hQ(x)
+

∑
x≥b2Bc+1

(hobsQ (x)− hQ(x))

and hence

−tobsQ (b2Bc+ 1) log
tobsQ (b2Bc+ 1)

tQ(b2Bc+ 1)
+

∑
x≥b2Bc+1

hobsQ (x) log
hobsQ (x)

hQ(x)
≤

∑
x≥b2Bc+1

(hobsQ (x)− hQ(x))2

hQ(x)
,

where the last term can be upper bounded by an analog of proof of Proposition 3.1(i) in Lambert
and Tierney (1984) in the following substep.

Step 2(a). In this substep, we upper bound
∑

x≥b2Bc+1(hobsQ (x)− hQ(x))2/hQ(x).
Fix a ε > 0, choose a γ > 0 in (1 − ε, 1) and an a = (

√
33 − 1)/4 ≈ 1.19 > 1, where ≈ means

approximately equal to. Define A := a(1−γ)/3. By Hölder’s inequality,

N1−ε
∑

x≥b2Bc+1

(hobsQ (x)− hQ(x))2

hQ(x)

= N1−ε
∑

x≥b2Bc+1

(hobsQ (x)− hQ(x))2

hQ(x)
A−xAx

≤ N1−ε

 ∑
x≥b2Bc+1

(hobsQ (x)− hQ(x))2

hQ(x)
A−x/γ

γ ∑
x≥b2Bc+1

(hobsQ (x)− hQ(x))2

hQ(x)
Ax/(1−γ)

1−γ

.

Since A > 1, it follows that

N · E

 ∑
x≥b2Bc+1

(hobsQ (x)− hQ(x))2

hQ(x)
A−x/γ

 ≤ ∑
x≥b2Bc+1

A−x/γ =
A−(b2Bc+1)/γ

1−A−1/γ
≤ A−1/γ

1−A−1/γ
<∞

and hence for an arbitrary δ ∈ (0, 1), the following inequality

N
∑

x≥b2Bc+1

(hobsQ (x)− hQ(x))2

hQ(x)
A−x/γ ≤ A−1/γ

1−A−1/γ

1

δ

holds with probability at least 1− δ. Therefore, with probability at least 1− δ, it follows that ∑
x≥b2Bc+1

(hobsQ (x)− hQ(x))2

hQ(x)
A−x/γ

γ

≤

(
A−1/γ

1−A−1/γ

1

Nδ

)γ
≤ 1(

A1/γ − 1
)γ 1

(Nδ)γ
.
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On the other hand, it follows from straight-forward algebra that∑
x≥b2Bc+1

(hobsQ (x)− hQ(x))2

hQ(x)
Ax/(1−γ) ≤

∑
x≥b2Bc+1

(hobsQ (x))2

hQ(x)
ax/3 +

∑
x≥b2Bc+1

hQ(x)ax/3.

The second term on the right is bounded by 1 by the following arguments. Since Q is supported on
[0, B], it follows that for any fixed x ≥ 2B, λ 7→ f(x|λ) := e−λλx/x! is a monotonically increasing
function and hence

hQ(x) =

∫ B

0
f(x|λ)dQ ≤ sup

λ∈[0,B]
f(x|λ) = f(x|B) = e−BBx/x!.

Therefore,∑
x≥b2Bc+1

hQ(x)ax ≤
∑
x≥2B

e−B
Bx

x!
ax = eaB−B

∑
x≥2B

e−aB
(aB)x

x!
= eaB−BP (Poi(aB) ≥ 2B),

where Poi(aB) denotes a random variable following from Poisson distribution with a parameter aB.
Moreover, it follows from Lemma A.5 that

P (Poi(aB) ≥ 2B) ≤ exp
(
−{(2− a)/a}2aB/3

)
and hence∑

x≥b2Bc+1

hQ(x)ax ≤ eaB−B exp
(
−{(2− a)/a}2aB/3

)
= exp{B(2a2 + a− 4)/(3a)} = 1

by verifying 2a2 + a− 4 = 0.
For any fixed k > 0, define AN to be the event {hobsQ (x) > khQ(x)ax/3 for some x ≥ b2Bc+ 1}.

Then, by Markov’s inequality

P (AN ) ≤
∑

x≥b2Bc+1

P (hobsQ (x) > khQ(x)ax/3) ≤
∑

x≥b2Bc+1

E{hobsQ (x)}
khQ(x)ax/3

≤ 1

k(a1/3 − 1)
.

Thus, P (AN ) can be made arbitrarily small by choosing k large enough and on the complement of
AN we have ∑

x≥b2Bc+1

(hobsQ (x))2

hQ(x)
ax/3 ≤ k2

∑
x≥b2Bc+1

hQ(x)ax = k2.

Therefore, for an arbitrary δ ∈ (0, 1), with probability at least 1− δ, the following inequality∑
x≥b2Bc+1

(hobsQ (x))2

hQ(x)
ax/3 ≤

(
1

δ

1

a1/3 − 1

)2

holds. Thus, for an arbitrary δ ∈ (0, 1), with probability at least 1− δ, it follows that ∑
x≥b2Bc+1

(hobsQ (x)− hQ(x))2

hQ(x)
Ax/(1−γ)

1−γ

≤

((
1

δ

1

a1/3 − 1

)2

+ 1

)1−γ

≤
(

20

δ

)2−2γ

,

where the last inequality follows from a = (
√

33 − 1)/4 and γ < 1. For an arbitrary δ ∈ (0, 1/2),
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with probability at least 1− 2δ, it follows that

N1−ε
∑

x≥b2Bc+1

(hobsQ (x)− hQ(x))2

hQ(x)
≤ N1−ε 1(

a
1−γ
3γ − 1

)γ 1

(Nδ)γ

(
20

δ

)2−2γ

= N1−ε−γ 202−2γ(
a

1−γ
3γ − 1

)γ 1

δ2−γ

and hence by letting γ go to 1− ε, it follows that∑
x≥b2Bc+1

(hobsQ (x)− hQ(x))2

hQ(x)
≤ 202ε

(a
ε

3(1−ε) − 1)1−ε

1

N1−ε
1

δ1+ε
.

Step 2(b). In this subset, we complete the upper bound of KL(hobs,hQ).
As a result of Step 2(a), for arbitrary δ ∈ (0, 1/2) and ε ∈ (0, 1), with probability at least 1−2δ,

it follows that

KL(hobs,hQ) ≤ KL(tobsQ , tQ) +
202ε

(a
ε

3(1−ε) − 1)1−ε

1

N1−ε
1

δ1+ε
.

To upper bound KL(tobsQ , tQ), the KL divergence between empirical observations and the true
distribution for discrete distributions, it follows from Mardia et al. (2019) that with probability 1−δ

KL(tobs, tQ) ≤ 2B + 1

2N
log

4N

2B + 1
+

1

N
log

3e

δ

and hence for any ε ∈ (0, 1) and δ ∈ (0, 1/3), with probability at least 1− 3δ it follows that

KL(hobsQ ,hQ) ≤ 2B + 1

2N
log

4N

2B + 1
+

1

N
log

3e

δ
+

202ε

(a
ε

3(1−ε) − 1)1−ε

1

N1−ε
1

δ1+ε
.

Therefore, there exist positive constants N1 = N1(ε) and C1 = C1(ε) such that for N ≥ N1

KL(hobsQ ,hQ) ≤ C1
B ∨ 1

N1−εδ1+ε

holds with probability at least 1− 3δ for any ε ∈ (0, 1) and δ ∈ (0, 1/3).

Proposition A.2.

(a) For any positive integer k ≥ 4(B ∨ 1) and any 1-Lipschitz function λ 7→ `(λ) on [0, B] with
`(0) = 0, there exists an approximation ̂̀(λ) =

∑k
x=0 bx

λxe−λ

x! such that

sup
λ∈[0,B]

|̂̀(λ)− `(λ)| ≤ CB/k

and maxx |bx| ≤ C (
√
ek/B)

k, where C > 1 is a universal constant.

(b) Suppose B > 0, N ∈ N+ and there exists constants c0, C0 > 0 such that B ∈ [c0 logN,C0N ].
Then, for any fixed c0 ≥ 100 and any small ε ∈ (0, 0.02) there exist constants C(ε) > 0 and
N(ε) > 1 and a sequence of coefficients {bx}∞x=0 such that for N ≥ N(ε) any 1-Lipschitz
function `(λ) on [0, B] with `(0) = 0 can be approximated by ̂̀(λ) =

∑∞
x=0 bx

λxe−λ

x! with an

uniform approximation error of C(ε)
√

B
logN with maxx |bx| ≤ C(ε)BN ε.

Proof of Proposition A.2 (a). The following two facts are used in our proof.
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Fact A.1 (Chapter 2.6 Equation 9 in Timan (2014)). Suppose k is a non-negative integer and
λ 7→ pk(λ) is a polynomial function with coefficients c0, . . . , ck, i.e. pk(λ) :=

∑k
x=0 cxλ

x. Then it
follows that coefficients {cx}kx=0 satisfy

|cx| ≤
kx

x!
max
|λ|≤1

|pk(λ)|.

Fact A.2 (Approximating eλ with Taylor expansion). Let λ ∈ [0, B]. For any k ≥ 2B, it follows
that

eλ −
k∑
x=0

λx

x!
=

∞∑
x=k+1

λx

x!
=
λk

k!

∞∑
x=1

(
λ

k + x
· · · λ

k + 1

)
≤ λk

k!

∞∑
x=1

1

2x
=
λk

k!

and hence

|eλ −
k∑
x=0

λx

x!
|/eλ ≤ λk

k!eλ
≤ Bk

k!eB
.

Applying Fact A.2, it holds that for any k ≥ 2B, there exists a polynomial qk(λ) =
∑k

x=0 λ
x/x!

of degree k such that |1 − qk(λ)e−λ| ≤ Bk/(k!eB) for all λ ∈ [0, B]. It is well known through
Jackson’s theorem (see Lemma A.3) that for any 1-Lipschitz function `(·) on [0, B], there exists a
polynomial pk(λ) of degree k such that supλ∈[−B,B] |`(λ)− pk(λ)| ≤ C1B/k, where `(λ) := −`(−λ)

for λ < 0 and C1 > 0 is a universal constant independent of k and `. Combining pk(λ), qk(λ) and
the fact that |pk(λ)| ≤ B + C1B/k ≤ (1 + C1)B, it follows that for λ ∈ [0, B]

|pk(λ)qk(λ)e−λ − `(λ)| ≤ |pk(λ)(qk(λ)e−λ − 1)|+ |pk(λ)− `(λ)| ≤ (1 + C1)
B

k

(
kBkek√
kkkeB

+ 1

)
,

where the last inequality follows from k! ≥
√
k (k/e)k for k ≥ 2 by Stirling’s approximation. It

further follows from the increasing monotonicity of B 7→ Bk/eB for B ≤ k/2 that
√
kBkek/(kkeB) ≤

√
k(k/2)kek/(kkek/2) =

√
k
(√
e/2
)k
< 1,

where the last inequality holds for all k ≥ 2, and hence

|pk(λ)qk(λ)e−λ − `(λ)| ≤ 2(1 + C1)B/k

for k ≥ 2(B ∨ 1). Therefore, we have shown that for any k ≥ 2(B ∨ 1), there exists a function

̂̀(λ) = pk(λ)qk(λ)e−λ =
2k∑
x=0

bx
λxe−λ

x!

such that |̂̀(λ) − `(λ)| ≤ 2(1 + C1)B/k. For the bounded on the coefficients bx, first let us define
the polynomial r(λ) := pk(B · λ)qk(B · λ) =

∑2k
x=0 b

′
x
λx

x! . Note that bx = b′x/B
x,

|r(λ)| ≤ (B + 2(1 + C1)B/k) eB ≤ 2(1 + C1)BeB

for λ ∈ [0, 1] and

|r(λ)| ≤ |qk(B · λ)|(1 + C1)B ≤
(

1 +
Bk+1

(k + 1)!

)
(1 + C1)B ≤

(
1 + e/2eB

)
(1 + C1)B ≤ 3(1 + C1)BeB
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for λ ∈ [−1, 0). Then we can apply Fact A.1 for the polynomial r(λ), which implies that
|b′x|
x!
≤ (2k)x

x!
max
|λ|≤1

|r(λ)| ≤ (2k)x

x!
3(1 + C1)BeB,

and hence

max
x
|bx| = max

x

|b′x|
Bx
≤ max

x

(
2k

B

)x
3(1+C1)BeB = 3(1+C1)

(
2k

B

)2k

BeB ≤ 3(1+C1)

(
2
√
ek

B

)2k

,

where the last inequality follows from B ≤ k/2 ≤ exp(k/2) and eB ≤ exp(k/2).

Proof of Proposition A.2 (b). Since B ≥ c0 logN , we have B ≥ 1 for sufficiently large N . Note that
λ 7→ 1

B `(Bλ) is a Lipschitz-1 function on [0, 1]. By Proposition A.4, it follows that there exists a
sequence of coefficients {bx}∞x=0 such that∣∣∣∣∣ 1

B
`(Bλ)−

∞∑
x=0

bxP (Poi(Bλ) = x)

∣∣∣∣∣ ≤ C(ε)

√
1

B logN
, for any λ ∈ [0, 1],

where bx = 0 for x > 4B, and∣∣∣∣bx − 1

B
`
(
B · x

B

)∣∣∣∣ ≤ C(ε)(1 + x1/2)N ε

B
, for x ≤ 4B.

Defining b∗x = Bbx and replacing Bλ by λ, it follows that

|`(λ)−
∞∑
x=0

b∗xP (Poi(λ) = x)| ≤ C(ε)

√
B

logN
, for any λ ∈ [0, B],

where b∗x = 0 for x > 4B, and

|b∗x − `(x)| ≤ C(ε)(1 + x1/2)N ε, for x ≤ 4B.

Moreover, It follows from the triangle inequality that |b∗x| ≤ 4B+C(ε)(1+2B1/2)N ε = O(BN ε).

The following proposition is an extension of Wu and Yang (2016, Lemma 3); see also Wu and
Yang (2020b, Section 3.3) for a nice survey.

Proposition A.3 (Lemma 32 in Jiao et al. (2018)). Suppose U0, U1 are two random variables
supported on [a−M,a+M ], where a ≥M ≥ 0 are constants. Suppose E{U j0} = E{U j1}, 0 ≤ j ≤ L.
Denote the marginal distribution of X where X|λ ∼ Poi(λ), λ ∼ Ui as Fi, where i = 0, 1. If
L+ 1 ≥ (2eM)2/a, then TV(F0, F1) ≤ 2(eM/

√
a(L+ 1))L+1

Proposition A.4. Suppose B > 0 and N ∈ N+ and there exists constants c0, C0 > 0 such that
B ∈ [c0 logN,C0N ]. Let `(·) be any Lipschitz-1 function on R with `(0) = 0. Then, for any fixed
c0 ≥ 96 and any small ε ∈ (0, 0.02) there exist positive constants C(ε) > 0 and N(ε) > 1 depending
on ε and a sequence of coefficients {bx}∞x=0 such that the following inequality holds for N ≥ N(ε),
i.e.

|`(λ)−
∞∑
x=0

bxP (Poi(Bλ) = x)| ≤ C(ε)

√
1

B logN
,λ ∈ [0, 1] (A.1)
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where bx = 0 for x > 4B, and∣∣∣bx − `( x
B

)∣∣∣ ≤ C(ε)(1 + x1/2)
N ε

B
, for any x ≤ 4B. (A.2)

Proof of Proposition A.4. Note that Proposition A.4 is an analogue of Theorem 5 in Han and Shi-
ragur (2020) and these lemmas below will be used in the following proof.

Lemma A.3 (Jackson’s theorem, Lemma 10 of Han and Shiragur (2020)). Let k > 0 be any integer,
and [a, b] ⊆ R be any bounded interval. For any Lipschitz-1 function `(·) on [a, b], there exists a
universal constant C independent of k, ` such that there exists a polynomial pk(·) of degree at most
k such that

|`(λ)− pk(λ)| ≤ C
√

(b− a)(λ− a)/k, ∀λ ∈ [a, b]. (A.3)

In particular, the following norm bound holds:

sup
λ∈[a,b]

|`(λ)− pk(λ)| ≤ C(b− a)/k. (A.4)

Lemma A.4 (Lemma 11 of Han and Shiragur (2020)). Let pk(λ) =
∑k

x=0 axλ
x be a polynomial of

degree at most k such that |pk(λ)| ≤ A for λ ∈ [a, b]. Then

1. If a+ b 6= 0, then

|ax| ≤ 27k/2A

∣∣∣∣a+ b

2

∣∣∣∣−x
(∣∣∣∣b+ a

b− a

∣∣∣∣k + 1

)
, x = 0, · · · , k.

2. If a+ b = 0, then |ax| ≤ Ab−x(
√

2 + 1)k, x = 0, · · · , k.

Lemma A.5 (Poisson tail inequality, Lemma 12 of Han and Shiragur (2020)). For X ∼ Poi(λ)

and any δ > 0, we have

P (X ≥ (1 + δ)λ) ≤ exp
(
−(δ2 ∧ δ)λ/3

)
and P (X ≤ (1− δ)λ) ≤ exp

(
−δ2λ/3

)
.

Lemma A.6 (Lemma 15 of Han and Shiragur (2020)). Define

gd,x(z) :=
d∑

d′=0

(
d

d′

)
(−x)d−d

′
d′−1∏
d′′=0

(
z − 2d′′

n

)
with d ∈ N, x ∈ [0, 1]. Then for any z ∈ [0, 1] and d ≥ 1, the following identity holds:

gd,x

(
z +

2

n

)
− gd,x(z) =

2d

n
gd−1,x(z).

Moreover, if nz/2 ∈ N and max{|z − x|, 8d/n,
√

8zd/n} ≤ ∆, then |gd,x(z)| ≤ (2∆)d.

Now we start our proof. Since B ≥ c0 logN , we have B ≥ 1 for sufficiently large N . Note that
the proof here is an analog of proof of Theorem 5 in Han and Shiragur (2020), but has much more
details. We could omit the following proof, but for the completeness of this paper, we decide to
write it down.
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We shall construct the following local intervals: for c1 := c0/4 and m = 1, 2, · · · ,M :=√
B/(c1 logN), define

Im :=

[
c1 logN

B
· (m− 1)2,

c1 logN

B
·m2

]
, I ′m :=

[
c1 logN

B
· (m− 4/3)2

+,
c1 logN

B
· (m+ 1/3)2

]
,

I ′′m :=

[
c1 logN

B
· (m− 2)2

+,
c1 logN

B
· (m+ 1)2

]
,

and without loss of generality we assume that M is an integer. Note that M ≥ 2. We shall also
define

λm :=
c1 logN

B
·

(m− 4/3)2
+ + (m+ 1/3)2

2

to be the center of I ′m. Note that Im ⊂ I ′m ⊂ I ′′m, and it follows from Lemma A.5 that for m ≥ 2,

P (Poi(Bλ) /∈ BI ′m|λ ∈ Im) ≤ 2N−c1/27. (A.5)

For m = 1, it can be analogous to verify that the last display holds for m = 1 and hence it holds
for m = 1, . . . ,M . Analogously, we have the following inequalities: for m = 1, . . . ,M

P (Poi(Bλ) /∈ BI ′′m|λ ∈ I ′m) ≤ 2N−c1/3 (A.6)

and

P (Poi(Bλ) /∈ BIm|λ ∈ Im − I ′m−1 − I ′m+1) ≤ 2N−c1/12. (A.7)

Now we use the local Poisson polynomial on each local interval I ′m constructed in Lemma A.7
to prove Proposition A.4.

We assume that
∑∞

x=0 b
(m)
x P (Poi(Bλ/2) = x) is the Poisson polynomial given by Lemma A.7 on

them-th local interval I ′m, with B replaced by B/2. Now consider the following Poisson polynomial:

p(λ) :=
∞∑
x=0

bxP (Poi(Bλ) = x) with bx :=
1

2x

M∑
m=1

∑
k∈BIm/2

(
x

k

)
b
(m)
x−k. (A.8)

We claim that the above polynomial with coefficients in (A.8) satisfies Proposition A.4. We first
verify the inequality (A.1). Using a change of variable j = x− k, we have

p(λ) =
M∑
m=1

P (Poi(Bλ/2) ∈ BIm/2)
∞∑
j=0

b
(m)
j P (Poi(Bλ/2) = j).

Since Im constitutes a partition of [0, 1], for λ ∈ [0, 1] there exists m∗ = 1, 2, · · · ,M , such that
λ ∈ Im∗ . We distinguish into three cases:

• Case 1: λ ∈ Im∗ − I ′m∗−1 − I ′m∗+1. By (A.7), we have P (Poi(Bλ/2) /∈ BIm∗/2) ≤ 2N−1 since
c1 = c0/4 ≥ 24, and therefore P (Poi(Bλ/2) ∈ BIm/2) ≤ 2N−2 for any m 6= m∗. Hence,

|`(λ)− p(λ)| ≤ C(ε)

√
λ

B logN
+ 4N−2 (1 + 2C(ε)N ε)

where we have used (A.10) in the second last inequality. As a result, the desired approximation
error in (A.1) holds.
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• Case II: λ ∈ Im∗ ∩ I ′m∗+1. In this case, Lemma A.5 gives P (Poi(Bλ/2) ∈ BIm/2) ≤ N−2 for
any m /∈ {m∗,m∗ + 1}. Consequently,

|`(λ)− p(λ)| ≤ P (Poi(Bλ/2) ∈ BIm∗/2)

∣∣∣∣∣∣`(λ)−
∞∑
j=0

b
(m∗)
j P (Poi(Bλ/2) = j)

∣∣∣∣∣∣
+P (Poi(Bλ/2) ∈ BIm∗+1/2)

∣∣∣∣∣∣`(λ)−
∞∑
j=0

b
(m∗+1)
j P (Poi(Bλ/2) = j)

∣∣∣∣∣∣
+

∑
m6=m∗,m∗+1

P (Poi(Bλ/2) ∈ BIm/2)

∣∣∣∣∣∣
∞∑
j=0

b
(m)
j P (Poi(Bλ/2) = j)

∣∣∣∣∣∣ ,
and using Lemma A.7 and the same concentration bounds gives (A.1).

• Case III: λ ∈ Im∗ ∩ I ′m∗−1. This case is entirely symmetric to Case II.

Combining the above three cases, we arrive at the inequality (A.1).
Next we verify the coefficient bound (A.2). By Lemma A.7, it is clear from the definition that

bx = 0 whenever x /∈ ∪Mm=1BI
′′
m and hence bx = 0 for x ≥ 4B. Fix any x ≥ 0 such that bx 6= 0,

assume that x ∈ BI ′′m∗ (if there are multiple choices of m∗, pick an arbitrary one). We claim that
any other m = 1, 2, · · · ,M such that |m−m∗| ≥ 5 do not contribute to bx in the summation (A.8).
In fact, if there is non-zero coefficient b(m)

x−k in (A.8), we must have

x ∈ BI ′′m∗ = c1 logN ·
[
(m∗ − 2)2

+, (m
∗ + 1)2

]
, k ∈ BIm/2 =

c1 logN

2
·
[
(m− 1)2,m2

]
,

x− k ∈ BI ′′m/2 =
c1 logN

2
·
[
(m− 2)2

+, (m+ 1)2
]
.

Summing up, we must have at least one of

(m∗ − 2)2
+ ≤

(m− 1)2 + (m− 2)2
+

2
, (m∗ + 1)2 ≥ m2 + (m+ 1)2

2
,

will fail whenever |m−m∗| ≥ 5. Hence, there exists constants C1, C2 such that

|bx| ≤
1

2x

M∑
m=1

∑
k∈BIm/2

(
x

k

)
|b(m)
x−k| ≤ C1 max

m:|m−m∗|≤4
max
j≥0
|b(m)
j | ≤

C2C(ε)(1 + x1/2)N ε

B

establishing (A.2).

Lemma A.7. Suppose B > 0 and N ∈ N+ and there exists constants c0, C0 > 0 such that B ∈
[c0 logN,C0N ]. Let `(·) be any Lipschitz-1 function on R with `(0) = 0. Then, for any fixed
c0 ≥ 16 and any small ε ∈ (0, 0.02) there exist constants C(ε) > 0 and N(ε) > 1 depending on ε and
a sequence of coefficients {bx}∞x=0 such that the following inequality holds for N ≥ N(ε), i.e.

|`(λ)−
∞∑
x=0

bxP (Poi(Bλ) = x)| ≤ C(ε)

√
λ

B logN
, for any λ ∈ I ′m, (A.9)
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where bx = 0 for x /∈ BI ′′m, and∣∣∣bx − `( x
B

)∣∣∣ ≤ C(ε)(1 + x1/2)N ε

B
, for any x ∈ BI ′′m, (A.10)

where I ′m and I ′′m are defined in the proof of Proposition A.4 .

Proof of Lemma A.7. Since B ≥ c0 logN , we have B ≥ 1 for sufficiently large N . Recall that
c1 = c0/4 ≥ 4. Let D := c2 logN where c2 > 0 is a small constant specified later and without loss
of generality it is assumed that D is an integer. Throughout the proof we will use C1, C2, · · · to
denote positive constants independent of (B, c1, c2). For m = 1 it follows from Lemma A.3 that
there exist coefficients {a1,d}Dd=0 such that

|`(λ)−
D∑
d=0

a1,d(λ− λ1)d| ≤ C1

√
c1 logN

B · (4/3)2λ

D
=

4C1

3c2

√
c1λ

B logN

for all λ ∈ I ′1. If m ≥ 2, it follows from Lemma A.3 that there exist coefficients {am,d}Dd=0 such that

|`(λ)−
D∑
d=0

am,d(λ− λm)d| ≤ 10C1

3c2

c1(m− 1
2)

B
≤ 10C1c1

c2B

(
m− 4

3

)
,

where the last inequality follows from m ≥ 2. Then it follows from m ≤ 4
3 +

√
Bλ

c1 logN for all λ ∈ I ′m
that

|`(λ)−
D∑
d=0

am,d(λ− λm)d| ≤ 10C1

c2

√
c1λ

B logN
.

Combining the above cases, it follows that for m = 1, . . . ,M and λ ∈ I ′m

|`(λ)−
D∑
d=0

am,d(λ− λm)d| ≤ 10C1

√
c1

c2

√
λ

B logN
.

As a sequence, it follows that for λ ∈ I ′m

|`(λm)−
D∑
d=0

am,d(λ− λm)d| ≤ |`(λ)− `(λm)|+ |`(λ)−
D∑
d=0

am,d(λ− λm)d| ≤ 5c1m logN

B

(
2

3
+

4C1

c2 logN

)
.

Moreover, applying Lemma A.4 on the shifted interval I ′m − λm gives that for d = 1, 2, · · · , D

|am,d| ≤ 9

(
2

3
+

4C1

c2 logN

)(
5

3

c1m logN

B

)1−d
N c2 .

As for d = 0, choosing λ = λm in the above inequality gives am,0 ≤ |`(λm)| + 20C1
c1m
Bc2
≤ 1 +

20C1

√
c1
c2

√
1

B logN .
Next we write the above polynomial as a linear combination of Poisson polynomials. Since

∞∑
x=0

x!

(x− d)!Bd
· P (Poi(Bλ) = x) = λd
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where y! :=∞ for y < 0, we have
D∑
d=0

am,d(λ− λm)d =
∞∑
x=0

b∗xP (Poi(Bλ) = x),

where b∗x :=
∑D

d=0 am,d
∑d

d′=0

(
d
d′

)
(−λm)d−d

′ j!

(x−d′)!Bd′ .
In other words, the inequality holds for the coefficients {b∗x}∞x=0. Now we define {bx}∞x=0 to be

the truncated version of {b∗x}∞x=0:

bx = b∗x · 1(x ∈ BI ′′m).

Clearly bx = 0 for all x /∈ BI ′′m. By Lemma A.6, for d = 1, 2, · · · , D,

|
d∑

d′=0

(
d

d′

)
(−λm)d−d

′ x!

(x− d′)!Bd′
|

≤


(

8 max

{
c1m logN

B , 1+c2 logN
B ,

m
√

(c1 logN)(1+c2 logN)

B

})d
if x ∈ BI ′′m(

8 max

{∣∣ x
B − λm

∣∣ /4, 1+c2 logN
B ,

m
√

(c1 logN)(1+c2 logN)

B

})d
otherwise.

Suppose c2 < c1. Then for N ≥ exp(1/c2), it follows that c2 logN ≥ 1 and hence

1 + c2 logN

B
≤ 2c2 logN

B
≤ 2c1m logN

B
and

m
√

(c1 logN)(1 + c2 logN)

B
≤ 2c1m logN

B
.

Therefore,

|
d∑

d′=0

(
d

d′

)
(−λm)d−d

′ x!

(x− d′)!Bd′
| ≤


(

16 c1m logN
B

)d
if x ∈ BI ′′m(

8
∣∣ x
B − λm

∣∣)d otherwise.

Hence, for x ∈ BI ′′m, we have

|bx − am,0| = |b∗x − am,0| ≤
17

B

(
2

3
+

4C1

c2 logN

)
c1 logN ·

(√
x

c1 logN
+ 2

)
N3c2 .

Since c2 < c1 and c2 logN ≥ 1, it follows that c1 logN ≥ 1 and hence

|bx − am,0| = |b∗x − am,0| ≤ 34c1

(
2

3
+ 4C1

)
· (
√
x+ 1)N4c2

B
,

for N sufficiently large (depending on c2).
Moreover, for any x ∈ BI ′′m,

|am,0 − `
( x
B

)
| ≤

(
8c1 + 40C1

c1

c2

)
(
√
x+ 1) logN

B

and therefore a triangle inequality gives the inequality (A.10).
As for the other inequality (A.9), by triangle inequality it suffices to prove that∑

x/∈BI′′m

|b∗x| · P (Poi(Bλ) = x) = O(N−1), for any λ ∈ I ′m.

To prove the last display, first note that for x /∈ BI ′′m, we have

|x−Bλm| ≥ 2c1m logN
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and

|b∗x| ≤ C(c1, c2) + 17

(
2

3
+

4C1

c2 logN

)
N c2

(
7|x−Bλm|√
c1Bλm logN

)D
,

where C(c1, c2) is a constant depending on c1, c2. Futhermore, by the Chernoff bound (Lemma A.5),
we have

P (Poi(Bλ) = x) ≤ exp

(
−1

3
|x−Bλ|

(
|x−Bλ|
Bλ

∧ 1

))
.

Since for all λ ∈ I ′m and x /∈ BI ′′m we have |x−Bλ| ≥ 4c1m logN and Bλ ≤ 4c1m
2 logN , it follows

that |x−Bλ|/(Bλ) ≥ 1/m and hence

P (Poi(Bλ) = x) ≤ exp

(
−1

6
· c1 logN · |x−Bλ|√

c1Bλm logN

)
.

Moreover, the assumption x /∈ BI ′′m implies that |x−Bλm|/
√
c1Bλm logN ≥ 2 > 0. Consequently,

whenever λ ∈ I ′m and x /∈ BI ′′m, we have∑
x/∈BI′′m

|b∗x|P (Poi(Bλ) = x)

≤ 2C(c1, c2)N−c1/3 +
∑

x/∈BI′′m

C3 exp

(
10c2 logN · log

|x−Bλm|√
c1Bλm logN

− 1

6
· c1 logN · |x−Bλ|√

c1Bλm logN

)
,

where the first term in the last display follows from (A.6) and C3 in the second term is a positive
constant which doesn’t depend on c1. Then by choosing c2 > 0 small enough we arrive at an
exponent=

(
−1

7c1 logN |x−Bλm|√
c1Bλm logN

)
. It follows from |x−Bλm|/

√
c1Bλm logN ≥ 2 > 0 that∑

x/∈BI′′m

|b∗x|P (Poi(Bλ) = x) ≤ 2C(c1, c2)N−c1/3 + C3N
−2c1/7 = O(N−2c1/7) = O(N−1), for c1 ≥ 4.

This completes the proof.

B Implementation details in Section 5

Let n1 = 13 and n2 = 10 denote the number of subjects in ASD and control groups respectively
and n = 23 represent the number of total subjects. Since 99 percent of {X(k)

ij /r
(k)
ij , i ∈ [Njk], j ∈

[nk], k ∈ [K]} for 100 genes are smaller than 15.09, we choose B = 20. We use VEM to compute
NPMLEs with a stop tolerance 0.01. The testings with covariance adjustments T̂Z and T̂h,Z are
conducted by R package “ideas” by Sun and Zhang with 105 Monte Carlo simulations.

To account for covariates, the pseudo-F statistics described in Section 2 has to be changed a
little bit. Let Dn be the n by n distance matrix corresponding to the mixing distributions, with
each entry equal to the squared W1 distance between the two corresponding NPMLEs, and let

Gn :=

(
In −

1

n
1n1>n

)
An

(
In −

1

n
1n1>n

)
,

be the Grower’s center matrix of An, where An := −(1/2)Dn, 1n := (1, 1, . . . , 1︸ ︷︷ ︸
n

)>, and In stands

for the n-dimensional identity matrix. Note that Gn may have some negative eigenvalues, and we
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set those negative eigenvalues to 0. Let Z be an n by 5 matrix consisting of diagnostics (1 as ASD
and 0 as control), age, sex, seqbatch, and RIN. Let HZ be the hat matrix HZ := Z(Z>Z)−1Z>.
Then the new F -statistic accounting for covariates is

F̂Z :=
tr(HZGHZ)

tr((I−HZ)G(I−HZ))
, (B.1)

where tr(·) denotes the trace of a matrix. To implement the permutation test, we permute the
variable “diagnostics” with all the rest covariates fixed and accordingly generate a new data matrix
Zπ. The corresponding F -statistic is denoted by F̂ πZ and the p-value is

the number of permutations π such that F̂ πZ ≥ F̂Z
the number of all possible permutations π

. (B.2)

When replacing the distance matrix Dn by the corresponding Poisson-smoothed version, the
corresponding p-value is

the number of permutations π such that F̂ πh,Z ≥ F̂h,Z
the number of all possible permutations π

, (B.3)

where F̂h,Z and F̂ πh,Z are the Poisson-smoothed versions of F̂Z and F̂ πZ .
The above two testing procedures are abbreviated as T̂Z and T̂h,Z .
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