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Abstract—We study the problem of clustering a set of data
points based on their similarity matrix, each entry of which
represents the similarity between the corresponding pair of
points. We propose a convex-optimization-based algorithm for
clustering using the similarity matrix, which has provable recov-
ery guarantees. It needs no prior knowledge of the number of
clusters and it behaves in a robust way in the presence of outliers
and noise. Using a generative stochastic model for the similarity
matrix (which can be thought of as a generalization of the
classical Stochastic Block Model) we obtain precise bounds (not
orderwise) on the sizes of the clusters, the number of outliers, the
noise variance, separation between the mean similarities inside
and outside the clusters and the values of the regularization
parameter that guarantee the exact recovery of the clusters with
high probability. The theoretical findings are corroborated with
extensive evidence from simulations.

I. INTRODUCTION

Big data sets are collected by companies, governments and
research institutions with the aim of extracting useful and
relevant information. Clustering [1] is a widely used pattern
recognition tool that broadly refers to the problem of grouping
together data points that are similar to each other. In certain
instances, the data points can be embedded in Euclidean space;
in others, they can be categorical data, which do not readily
lend themselves to such an embedding, or a combination of
both. For example, in the case of census data, each individual
person has different attributes such as age and income which
which are numerical and race, religion, address etc., that
are categorical [2]. Simple encoding schemes, such as using
a D−dimensional vector for a categorical field of size D,
not only artificially inflate the dimension of the data, but
might also give poor results when used with a numerical
algorithm when compared to learning an embedding based
on similarity or kernel methods [3], [4]. Depending on the
data and application domain, it is often possible to construct
a similarity map between pairs of data points that assigns a
numerical value to how similar (or dissimilar) two data points
are. This in turn leads to a similarity matrix (also referred to
as an affinity matrix in the literature).

If we have noiseless data and an ideal similarity map, then
all pairs of points in the same cluster would be mapped to
the same similarity value, say 1, and 0 otherwise. However,
in reality, the data will be noisy and it is difficult to design
a perfectly ideal similarity map. We assume a simple but
reasonable probabilistic generative model for the similarity
matrix where the average similarity between two data points
is higher if they are in the same cluster and lower otherwise.
This model can be seen as a natural extension of the popular
Stochastic Block Model [5] which is a random unweighted

graph model where the probability of the existence of an edge
between nodes in the graph that are in the same cluster is
higher than those that are not.

The data, apart from being noisy might also contain outliers,
that is data points that do not belong to any clusters. Thus,
given a noisy similarity matrix, denoted by A, with outliers,
and no other side information, we want to reliably find the
clusters. In this regard, we seek to identify a matrix X whose
rank is equal to the number of clusters and in the regions
corresponding to the same cluster has entries that are non-
zero and equal, and zero elsewhere - thus reflecting the cluster
regions (defined formally in Section III). In most practical
scenarios, the number of clusters is much lesser than the total
number of data points, which makes the matrix X low-rank.

Convex programs for clustering have drawn attention re-
cently as they are robust to noise and lend themselves to
analysis. A general convex approach of using low-rank plus
sparse matrix decomposition via trace-norm minimization with
a regularized l1-norm penalty (robust PCA) for finding clusters
in unweighted graphs has been well-studied [6]–[15]. While
the sparse noise model and hence the l1 penalty works very
well for unweighted graphs, it does not fit the similarity model.

Inspired by the robust PCA-based clustering algorithms for
unweighted graphs, we propose the following convex program
to find the low-rank matrix X for similarity clustering:

minimize
X

1

2
‖A−X‖2F + λ trace(X) (I.1)

subject to
X < 0, Xi,j ≥ 0 for all i, j ∈ [n]∑
j

Xi,j ≤ 1, for all i ∈ [n]

where ‖.‖F is the Frobenius norm (square root of the sum of
the squares of the entries of the matrix), [n] denotes the set
{1, 2, . . . , n} and λ > 0 is a regularization parameter (we will
later comment on how to set this). Also, by X < 0, we mean
that X is symmetric and has non-negative eigenvalues. The
constraints

∑
jXi,j ≤ 1 along with X ≥ 0 helps in forcing

the entries outside the cluster to zero and those corresponding
to the same cluster to be equal.

Program I.1 is very simple and intuitive. Furthermore, it
does not require any information other than the similarity
matrix itself. The goal of this work is to understand the funda-
mental limits of the simple Program I.1, that is, the conditions
under which it successfully recovers clusters. In particular, we
aim to address the following questions (Section III-D):



1) How noisy can the similarity matrix be? At a given noise
level, how separated should the average similarity inside
and outside the clusters be?

2) How small can the clusters be? How much can their relative
sizes vary?

3) How many outliers can be tolerated? How is the perfor-
mance affected as the number of outliers becomes large,
say larger than the size of the clusters?

Our contributions are multifold:
1) We analyze Program I.1 on a generative model (defined

further below in Section II), that is a natural extension of
the Stochastic Block Model, and obtain precise thresholds
(not orderwise) as a function of the problem parameters
sufficient for the exact recovery of the underlying cluster
structure (Section III). Though our analysis uses the prob-
lem parameters, the program itself is agnostic to them.

2) We provide insights into the behavior of the solution in the
presence of outliers (Sections III-B and III-C), which is
important from a practical standpoint. In the presence of a
large number of outliers, Program I.1 exhibits an interesting
difference from what occurs in robust PCA-based convex
algorithms for unweighted graphs.

3) Our analysis also gives insights into the effect of the noise
variance in the similarity matrix on the successful recovery
of clusters.

II. MODEL
We consider the following random generative model for

similarity matrices:
Definition 2.1 (Similarity Block Model): Let n be the

number of data points comprised of K disjoint clusters and a
set of outliers (points that do not belong to any clusters). Let
A = AT be the similarity matrix with entries Al,m ∈ [0, 1].
The entries Al,m with l ≥ m are random, independent of each
other given the cluster assignment, with variance σ2 and the
means given by:

E(Al,m) =

{
µi, if l,m are in the same cluster i.
µout, if l,m are not in the same cluster.

III. MAIN RESULTS

Let ni, where i ∈ [K] denote the number of nodes in
cluster i, which we will refer to as the size of cluster i.
If there are outliers, that is nodes that do not belong to
any cluster, we denote the number of outliers by nK+1 (or
nout). Assume that the similarity matrix is generated from
the model in Definition 2.1. In this section we present the
conditions to guarantee the exact recovery of the underlying
cluster structure in the cases when there are (a) no outliers,
(b) a small number of outliers and (c) a large number of
outliers. The results presented hold with probability at least
1−n2 exp{−Ω(nmin)}, where nmin = mini≤K ni is the size
of the smallest cluster.

A. No Outliers
In the case where there are no outliers, we aim to recover

the following matrix via Program I.1,

X∗ =

K∑
i=1

xix
T
i , xi =

1
√
ni

ci (III.1)

where ci ∈ Rn is the indicator vector for cluster i, with ones
in the entries corresponding to the data points that belong
to cluster i and zeros everywhere else. xi is the normalized
indicator vector for cluster i. So, the entries of X∗ are:

X∗l,m =

{
1
ni
, if both nodes l,m are in the same cluster i

0 , if nodes l,m are not in the same cluster

The following quantities are important for our results:

• Cluster Density: For each cluster i ∈ [K], define ρi :=
niµi > 0, requiring µi > 0.

• Minimum Cluster Density is defined as
ρmin := mini≤K ρi > 0.

• Cross Cluster Density: For each pair of clusters
i 6= j ∈ [K], define the cross cluster density as

γij := 2
(
µi+µj

2 − µout
)(

1
ni

+ 1
nj

)−1
> 0, requiring

µi+µj

2 > µout. That is, the average of the mean similarity
of any two clusters clusters i and j must be at least as big
as the mean similarity between them.

• Minimum Cross Cluster Density: is defined as
γmin := mini 6=j≤K γij > 0.

• Noise threshold, Λ := 2 σ
√
n which depends only on the

noise variance and number of data points.

Theorem 1: [No Outliers] When there are no outliers, if the
regularizer λ is within the following range,

Λ < λ < min {ρmin, γmin} − 1 (III.2)

then, X∗ is the unique optimal solution to Program I.1
with high probability. If λ > min {ρmin, γmin} − 1, then Pro-
gram I.1 fails to recover X∗ with high probability.

B. Small Number of Outliers
In the presence of outliers, the solution to Program I.1

depends on the number of outliers compared to the size of
the smallest cluster. When nout ≤ O(nmin), we refer to it
as a small number of outliers. In addition to the cross cluster
density γ defined before, define the following:

• Effective cluster density in presence of outliers for each clus-
ter i as ηi := (µi − 2µout)ni > 0, implying µi > 2µout,
required only in the case of small number of outliers.

• Minimum effective density be ηmin := mini≤Kηi.

Theorem 2: [Small Number of Outliers] If the regularizer λ
is within the following range,

Λ + µoutnK+1 < λ < min {ηmin, γmin} − 1 (III.3)

then X∗ is the unique optimal solution to Program I.1 with
high probability. If λ > min {ηmin, γmin} − 1 then, Pro-
gram I.1 fails to recover X∗ with high probability.



C. Large Number of Outliers

When the number of outliers is large (at least Ω(
√
n)) and is

comparable or larger than the size of clusters, we cannot hope
to recover X∗ which requires the entries corresponding to the
outlier region to be all zeros. Instead Program I.1 groups all
the outliers together to give an extra cluster and hence recovers
X̃ :=

∑K+1
i=1 xix

T
i where xK+1 is the normalized indicator

vector for the cluster of outliers. So, the entries of X̃ are:

X̃l,m =


1
ni
, if nodes l,m are in the same cluster i.

0 , if nodes l,m are in different clusters.
1

nK+1
if both nodes l,m are outliers.

Note that this is not a bad scenario. Rather, it is good that
outliers get separated out as a cluster and do not get merged
with other clusters. Once the cluster structure is revealed, one
can compare the average similarity inside the clusters obtained
and the average similarity outside to decide if any of the
clusters obtained has average similarity very close to that of
outside cluster region, and hence discard it.

In addition to the cluster densities ρ and the cross cluster
denisities γ, define the following:
• Outlier Density: ρK+1 := µoutnK+1.
• Cross Cluster-Outlier Density: For each i ∈ [K],

define cross density of cluster i with outliers as,

γi,K+1 := (µi − µout)
(

1
ni

+ 1
nK+1

)−1
> 0.

• Minimum cluster density in the presence of outliers as
ρoutmin := mini≤K+1 ρi.

• Minimum cross cluster density in the presence of outliers
γoutmin := mini6=j≤K+1γij .

Theorem 3: [Large Number of Outliers] If the regularizer λ
is within the following range,

Λ < λ < min {ρoutmin, γ
out
min} − 1, (III.4)

then X̃ is the unique optimal solution to Program I.1 with high
probability. If λ > min {ρoutmin, γ

out
min}−1, then, the Program I.1

fails to recover X̃ with high probability.

Note that Theorems 2 and 3 are not in contradiction, since
if the conditions on mean and cluster sizes are satisfied in
both cases, setting λ > 2σ

√
n+ µoutnK+1 (Equation III.3 in

Theorem 2) would violate µoutnK+1 > λ+ 1 (Equation III.4
in Theorem 3).

D. Discussion:

1) Size of the Smallest Cluster: All three theorems stated in
this section imply ρi = µini > Λ + 1 = 2σ

√
n + 1 ∀i,

and hence we require nmin ≥ Ω(
√
n) to guarantee success,

which matches the earlier known results. The results cannot
guarantee success when Λ + 1 < ρmin, that is, when
nmin < O(

√
n). In this regime it is not known whether

the clustering problem can be efficiently solved.
2) Relative Size of Clusters: Note that the results do not

place any restrictions on the relative size of clusters. So,
we can have clusters of varying sizes: for example, some
clusters of size Θ(n) and some of size Θ(

√
n).

3) Size of Outliers: In the presence of outliers, Theorem 2
implies ρi > ηi > Λ + µoutnK+1 + 1. So to guarantee the
exact recovery of X∗ as the optimal solution to Program I.1
we require nmin ≥ max{Ω(

√
n),Ω(nK+1)}. Note that

this requirement is automatically satisfied if the number
of outliers is o(

√
n) as we need nmin ≥ Ω(

√
n) in all

cases. If the number of outliers is large in comparison to
the size of the smallest cluster, we cannot guarantee the
recovery of a solution with all zero entries in the region
corresponding to the outliers.

4) Large Number of Outliers: Theorem 3 implies ρout =
µoutnout ≥ Λ+1 = 2σ

√
n+1. So, if the number of outliers

is at least Ω(
√
n), i.e, the number of outliers is large, then

we can guarantee that they form their own cluster under
the conditions in Theorem 3.

5) Separation Between the Means Compared to the Noise
Variance: For simplicity, assume all the clusters are of
equal size, ni = m and µi = µin ∀i.
a) In the case of no outliers, from γij > 2σ

√
n+1 (Equa-

tion III.2) we get the following sufficient condition:

µin − µout
σ

>
1

m

(
2
√
n+

1

σ

)
.

If m = Θ(
√
n), then as n → ∞, we require

µin−µout

σ > Ω(1), whereas if m = Θ(n) then
µin−µout > 0 is sufficient to guarantee exact recovery.

b) In the case of large number of outliers, from Equa-
tion III.4 we get:

µin − µout
σ

>

(
1

m
+

1

nK+1

)(
2
√
n+

1

σ

)
.

c) In the case of small number of outliers, from Equa-
tion III.3 we get:

µin − 2µout
σ

>
1

m

(
2
√
n+

µoutnK+1 + 1

σ

)
.

So the average similarity inside the clusters will have
to be higher than twice the average similarity outside to
recover X∗ in the presence of small number of outliers.

6) Regularization Parameter: If the noise variance is known,
then the regularizer can be set to λ = 2σ

√
n. In case

there is no information about σ, then we suggest using the
empirical variance of A or setting λ = 2

√
n. The value of

λ provides a bound on how much noise can be tolerated.
For e.g, if we set λ = 2

√
n, then σ ≤ 1 can be tolerated.

E. Brief Proof Outline

Due to reasons of space, we are only able to provide a
brief outline of the proof. However, the interested reader may
consult the supplementary material posted at this url 1. Define
dual variables for the constraints of Program I.1,
1) Y ∈ Rn×n, Y < 0 for constraint X < 0.
2) ν ∈ Rn, ν ≥ 0 for constraints

∑
jXi,j ≤ 1, ∀i.

3) Z ∈ Rn×n, Z ≥ 0 for constraints X ≥ 0.

1http://www.its.caltech.edu/∼rkorlaka/SimilarityClusteringSupplementary.
pdf

http://www.its.caltech.edu/~rkorlaka/SimilarityClusteringSupplementary.pdf
http://www.its.caltech.edu/~rkorlaka/SimilarityClusteringSupplementary.pdf
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Fig. 1: Fraction of correct entries in the solution obtained by running
Program I.1 with n = 100, µout = 0.2 and varying µin and σ, for
three cases: (1) no outliers, (2) small number of outliers and (3) large
number of outliers. Dotted red line is the threshold for µin predicted
by theory for the corresponding σ. The white and black regions
represent the empirical regions of success and failure respectively.

If a feasible X̂ is an optimal solution to Program (I.1), then
the following conditions have to hold (from KKT conditions
and complementary slackness):

Z + Y = λI + X̂ + 1νT −A + ν1T

trace(X̂Y) = 0, trace(X̂Z) = 0, νT (X̂1− 1) = 0.

We first construct dual variables that satisfy the
conditions above. The dual variables Z,Y, ν thus
obtained are functions of the problem parameters
{{µi}i∈[K], µout, σ, {ni}i∈[K], nout}. The condition Y < 0
will give the lower bound on λ of the form Λ or Λ+µoutnout
depending on the case. The conditions ν ≥ 0 gives the lower
bounds on the cluster densities ρ. The conditions Z ≥ 0
gives the lower bounds on cross-cluster densities γ and the
effective cluster densities η.

IV. SIMULATIONS

We consider an example of n = 100 data points to illustrate
the sharp transitions predicted in the main results in Section III
via numerical simulations. The similarity matrix is generated
as follows: For l ≥ m, Alm is sampled independently from
N (µi, σ

2) if both the points l,m belong to the same cluster
i, else it is sampled independently from N (µout, σ

2). Note
that this does not necessarily satisfy Al,m ∈ [0, 1]. However,
we will choose the µin, µout and range of σ such that we
will not be violating the condition of the average similarity
inside the clusters being positive. All the results presented are
an average over 5 experiments unless otherwise stated. We
use the CVX package for Matlab [16] to run Program I.1.
We set the mean similarity between nodes that are not in the
same cluster to µout = 0.2. The standard deviation σ starts
with 0.01 and is then varied from 0.05 to 0.20 in steps of
0.05. Note that for the clusters sizes of 20 and 80, non-zero
entries of the ideal solution are 0.05 and 0.0125 respectively.
We declare an entry of the solution matrix Xl,m to be in error
if |Xl,m −Xideal

l,m | > 10−3. For Theorems 1 and 2, Xideal is
X∗ and for Theorem 3, Xideal is X̃.
1) No Outliers: We consider five clusters of size 20 each,

and no outliers. We set the regularization parameter λ =
1.001Λ = 1.001 × 2σ

√
n (lower bound on λ in Equa-

tion III.2). We vary the mean similarity inside the clusters
µin from 0.25 to 0.5 in steps of 0.05. From Theorem 1,

we expect Program I.1 to succeed (to obtain solution X∗)
with high probability when, µin > µout + (λ+ 1)/n1.

2) Small Number of Outliers: For this case, we consider one
cluster of size n1 = 80 and the rest nout = 20 are outliers.
We set the regularization parameter to λ = 1.001(Λ +
µoutnout) (lower bound on λ in Equation III.4) and vary
µin from 0.4 to 0.65 in steps of 0.05. From Theorem 2, we
expect Program I.1 to succeed (obtain solution X∗) with
high probability when, µin > 2µout + (λ+ 1)/n1.

3) Large Number of Outliers: In this case, we consider
one cluster of size n1 = 20 and the rest nout = 80 are
outliers. We set the regularization parameter to λ = 1.001Λ
(lower bound on λ in Equation III.4) and vary µin from
0.25 to 0.55 in steps of 0.05. From Theorem 3, we expect
Program I.1 to succeed (obtain solution X̃) with high
probability when, µin > µout + (λ+ 1) (1/n1 + 1/nout).

Figure 1 shows the fraction of correct entries of the output
of Program I.1 for each of the three cases described above. The
white and black regions corresponds to the empirical regions
of success and failure respectively. The dashed-red line is the
threshold for µin as predicted by our results in Section III.
We observe that the transition occurs around µin predicted
from our results. Our theoretical thresholds are sharp even for
n = 100 with cluster sizes as small as 20.

V. RELATED WORKS

In this section we will discuss some related works.
Convex Penalties: [17]–[20] have introduced regularized

convex relaxations for hierarchical clustering and show that as
the regularizer is varied in a certain range there is a coalescing
of clusters that gives rise to a hierarchical tree. However, they
do not give guarantees on the problem parameters that give
rise to a particular clustering at any point in the tree. Also,
they do not provide theoretical guarantees on clustering in the
presence of outliers.

Spectral Clustering: [21] analyzes the spectral partitioning
of graphs under the Stochastic Block Model and [22] studies
the asymptotic correctness of spectral clustering for these
models. [23], [24] study the stability of the eigenvectors of
the graph Laplacian under noisy perturbations. [24] provides
guarantees on the exact recovery of clusters for spectral
clustering under noisy perturbations to the similarity matrix.
However, they require the clusters be balanced (i.e., the size
of the clusters are constant fractions of each other). Moreover,
these results do not hold when there are outliers.

Convex Programs for Graph Clustering: [6]–[15] con-
sider clustering unweighted graphs via convex optimization
based on a low-rank + sparse decomposition of the unweighted
adjacency matrix of the graph via nuclear norm minimization
with l1 regularization. In the case of unweighted graphs,
if the edge density inside the clusters is bigger than that
outside, under mild conditions, convex programs can recover
clusters of size Ω(

√
n), regardless of the size of the outliers.

Whereas, in the case of similarity clustering (Section III-C),
if the number of outliers is larger than the smallest cluster,
Program I.1 gives an extra cluster that contains all the outliers.



Submatrix Localization: [25] considers the special case
of submatrix localization (bi-clustering) when the number of
clusters, K = 1 and provides guarantees for exact recovery
via message passing algorithm when the size of the cluster is
known. Section 3 in [26] considers the problem of submatrix
localization when the clusters are homogeneous (same mean
inside all the clusters) and have same size. They provide order-
wise bounds on signal strength required for exact recovery of
clusters from a convex program which requires the knowledge
of cluster sizes and number of clusters. We can recover the
results for the case of symmetric submatrix localization by
setting µi = µ, ni = m, ∀i ∈ [K]. Note that the quantities
signal and SNR defined in [25] and [26] are related to the
separation between means (discussed in 5 in Section III-D)
that arises via cross-cluster density.

Convex Program for Similarity Clustering: The work
that is closest to ours in terms of the approach and analysis
is [27], which considers the problem of clustering a similarity
matrix when the number of clusters are known. [27] analyzes
a convex program and provides guarantees for recovering the
clusters as long as the number of number of outliers is not
too large (less than the size of the smallest cluster). While the
results in [27] are interesting, it does not comment on the
quality of the solution when the number of outliers is large.
Further, the convex program in [27] requires the knowledge
of the number of clusters, which can be problematic in the
presence of outliers. In contrast, Program I.1 is oblivious to
the exact number of clusters and naturally figures it out as
a function of the regularization parameter. This is helpful in
understanding the behavior of the program when there are
large number of outliers. Our analysis shows that Program I.1
can recover the clusters as long as the regularization parameter
is within a range rather than a specific number, which is robust
to error when it is heuristically set. The model and analysis
in [27] does not capture the effect of the noise variance in the
similarity matrix on the performance of the program. Though
our analysis technique is inspired by the work [27], we extend
the analysis to understand the behavior of the solution in the
presence of large number of outliers as well as to capture the
effect of the noise variance. Also, our analysis gives precise
thresholds for the successful recovery conditions, whereas the
results in [27] are orderwise.

VI. CONCLUSIONS
In this work we focus on understanding the performance

of convex-optimization-based clustering in the presence of
outliers when we only have the similarity matrix given to
us (with no additional information). We analyze a simple
and intuitive convex program (I.1), and for the stochastic
similarity model, we provide guarantees on its performance by
deriving precise thresholds (not orderwise) on the cluster sizes,
the strength of similarity compared to noise, the number of
outliers, and the regularization parameter. We corroborate our
results through simulations. One of the drawbacks of convex
approach is that it is computationally intensive. In the future,
we want to focus on scaling the convex approach to work with
large datasets.
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