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ABSTRACT

The problem of finding clusters in a graph arises in several ap-
plications such as social networks, data mining and computer
networks. A typical, convex optimization approach, that is
often adopted is to identify a sparse plus low-rank decompo-
sition of the adjacency matrix of the graph, with the (dense)
low-rank component representing the clusters. In this paper,
we sharply characterize the conditions for successfully identi-
fying clusters using this approach. In particular, we introduce
the “effective density” of a cluster that measures its signif-
icance and we find explicit upper and lower bounds on the
minimum effective density that demarcates regions of success
or failure of this technique. Our conditions are in terms of (a)
the size of the clusters, (b) the denseness of the graph, and
(c) regularization parameter of the convex program. We also
present extensive simulations that corroborate our theoretical
findings.

Index Terms— Graph clustering, low rank plus sparse,
convex optimization, thresholds.

1. INTRODUCTION

Given an unweighted graph, finding nodes that are well-
connected with each other is a very useful problem with
applications in social networks [1–3], data mining [4, 5],
bioinformatics [6, 7], computer networks, sensor networks.
Different versions of this problem have been studied as graph
clustering [8–11], correlation clustering [12–15], graph par-
titioning on planted partition model [16–19]. Developments
in convex optimization techniques to recover low-rank matri-
ces [20–24] via nuclear norm minimization has recently led
to the development of several convex algorithms to recover
clusters in a graph [25–32].

Let us assume that a given graph has dense clusters; we
can look at its adjacency matrix as a low-rank matrix with
sparse noise. That is, the graph can be viewed as a union of
cliques with some edges missing inside the cliques and extra
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(a) Feasibility of Program 1 in terms of the minimum effective density
(EDmin).
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(b) Feasibility of Program 1 in terms of the regularization parameter (λ).

Fig. 1: Characterization of the feasibility of Program (1) in terms of the
minimum effective density and the value of the regularization parameter. The
feasibility is determined by the values of these parameters in comparison with
two constants Λsucc and Λfail, derived in Theorem 1 and Theorem 2. The
thresholds guaranteeing the success or failure of Program 1 derived in this
paper are fairly close to each other.

edges between the cliques. Our aim is to recover the low-rank
matrix since it is equivalent to finding clusters. In this paper,
we will look at the following well known convex program
which decomposes the adjacency matrix (A) as the sum of a
low-rank (L) and a sparse (S) component.

minimize
L,S

‖L‖? + λ‖S‖1 (1)

subject to
1 ≥ Li,j ≥ 0 for all i, j ∈ {1, 2, . . . n} (2)
L + S = A

where λ > 0 is a regularization parameter. ‖X‖? and ‖X‖1
denote the nuclear norm (sum of the singular values) and the
`1-norm (sum of the absolute values of all entries) of the ma-
trix X respectively. This program is very intuitive and re-
quires the knowledge of only the adjacency matrix. Program 1
has been proposed in several works [28–30].

We consider the popular stochastic block model (also
called the planted partition model) for the graph. Under
this model of generating random graphs, the existence of an



edge between any pair of vertices is independent of the other
edges. The probability of the existence of an edge is identical
within any individual cluster, but may vary across clusters.
One may think of this as a heterogeneous form of the Erdös-
Renyi model. We characterize the conditions under which
Program 1 can successfully recover the correct clustering,
and when it cannot. Our analysis reveals the dependence of
its success on a metric that we term the minimum effective
density of the graph. While defined more formally later in the
paper, in a nutshell, the minimum effective density of a ran-
dom graph tries to capture the density of edges in the sparsest
cluster. We derive explicit upper and lower bounds on the
value of this metric that determine the success or failure of
Program 1 (as illustrated in Fig. 1a).

A second contribution of this paper is to explicitly char-
acterize the efficacy of Program 1 with respect to the regular-
ization parameter λ. We obtain bounds on the values of λ that
permit the recovery of the clusters, or those that necessitate
Program 1 to fail (as illustrated in Fig. 1b). Our results thus
lead to a more principled approach towards the choice of the
regularization parameter for the problem at hand.

Most of the convex algorithms proposed for graph cluster-
ing, for example, the recent works by Xu et al. [25], Ames and
Vavasis [26, 27], Jalali et al. [28], Oymak and Hassibi [29],
Chen et al. [30], Ames [31], Ailon et al. [32] are variants of
Program 1. These results show that planted clusters can be
identified via tractable convex programs as long as the cluster
size is proportional to the square-root of the size of the adja-
cency matrix. However, the exact requirements on the cluster
size are not known. In this work, we find sharp bounds for
the identifiability as a function of cluster sizes, inter cluster
density and intra cluster density. To the best of our knowl-
edge, this is the first explicit characterization of the feasibility
of the convex optimization based approach (1) towards this
problem.

The rest of the paper is organized as follows. Section 2
formally introduces the model considered in this paper. Sec-
tion 3 presents the main results of the paper: an analyti-
cal characterization of the feasibility of the low rank plus
sparse based approximation for identifying clusters. Sec-
tion 4 presents simulations that corroborate our theoretical
results. Finally, the proofs of the technical results are de-
ferred to Sections 7 and 8.

2. MODEL

For any positive integerm, let [m] denote the set {1, 2, . . . ,m}.
Let G be an unweighted graph on n nodes, [n], with K dis-
joint (dense) clusters. Let Ci denote the set of nodes in the
ith cluster. Let ni denote the size of the ith cluster, i.e., the
number of nodes in Ci. We shall term the set of nodes that do
not fall in any of these K clusters as outliers and denote them
as CK+1 := [n] −

⋃K
i=1 Ci. The number of outliers is thus

nK+1 := n−
∑K
i=1 ni. Since the clusters are assumed to be

disjoint, we have Ci ∩ Cj = ∅ for all i, j ∈ [n].
LetR be the region corresponding to the union of regions

induced by the clusters, i.e., R =
⋃K
i=1 Ci × Ci ⊆ [n] × [n].

So, Rc = [n] × [n] − R is the region corresponding to out
of cluster regions. Note that |R| =

∑K
i=1 n

2
i and |Rc| =

n2 −
∑K
i=1 n

2
i . Let nmin := min

1≤i≤K
ni.

Let A = AT denote the adjacency matrix of the graph
G. The diagonal entries of A are 1. The adjacency matrix
will follow a probabilistic model, in particular, a more general
version of the popular stochastic block model [16, 33].

Definition 1 (Stochastic Block Model). Let {pi}Ki=1, q be
constants between 0 and 1. Then, a random graph G, gener-
ated according to stochastic block model, has the following
adjacency matrix. Entries of A on the lower triangular part
are independent random variables and for any i > j:

Ai,j =

{
Bernoulli(pl) if both {i, j} ∈ Cl for some l ≤ K
Bernoulli(q) otherwise.

So, an edge inside ith cluster exists with probability pi
and an edge outside the clusters exists with probability q. Let
pmin := min

1≤i≤K
pi. We assume that the clusters are dense

and the density of edges inside clusters is greater than out-
side, i.e., pmin > 1

2 > q > 0. We note that the Program 1
does not require the knowledge of {pi}Ki=1, q or K, and uses
only the adjacency matrix A for its operation. However, the
knowledge of {pi}Ki=1, q will help us tune λ in a better way.

3. MAIN RESULTS

The desired solution to Program 1 is (L0,S0) where L0 cor-
responds to the full cliques, when missing edges insideR are
completed, and S0 corresponds to the missing edges and the
extra edges between the clusters. In particular we want:

L0
i,j =

{
1 if both {i, j} ∈ Cl for some l ≤ K,
0 otherwise.

(3)

S0
i,j =


−1 if both {i, j} ∈ Cl for some l ≤ K, and Ai,j = 0,

1 if {i, j} are not in the same cluster and Ai,j = 1,

0 otherwise.

It is easy to see that the (L0,S0) pair is feasible. We say
that Program 1 succeeds when (L0,S0) is the optimal solu-
tion to Program 1. In this section we present two theorems
which give the conditions under which Program 1 succeeds
or fails.

The following definitions are critical to our results.

• Define EDi := ni (2pi − 1) as the effective density of
cluster Ci and EDmin = min

1≤i≤K
EDi.



• Let γsucc := max
1≤i≤K

4
√

(q(1− q) + pi(1− pi))ni,

γfail :=
∑K
i=1

n2
i

n

• Λfail := 1√
q(n−γfail)

and Λsucc := 1

4
√
q(1−q)n+γsucc

.

Theorem 1. Let G be a random graph generated according to
the Stochastic Block Model 1 with K clusters of sizes {ni}Ki=1

and probabilities {pi}Ki=1 and q, such that pmin > 1
2 > q >

0. Given ε > 0, there exists positive constants δ, c1, c2 such
that,

1. For any given λ ≥ 0, if EDmin ≤ (1 − ε)Λ−1
fail then Pro-

gram 1 fails with probability 1− c1 exp(−c2|Rc|).

2. Whenever EDmin ≥ (1 + ε)Λ−1
succ, for λ = (1 − δ)Λsucc,

Program 1 succeeds with probability 1−c1n2 exp (−c2nmin).

As it will be discussed in Sections 7 and 8, Theorem 1 is
actually a special case of the following result, which charac-
terizes success and failure as a function of λ.

Theorem 2. Let G be a random graph generated according to
the Stochastic Block Model 1 with K clusters of sizes {ni}Ki=1

and probabilities {pi}Ki=1 and q, such that pmin > 1
2 > q >

0. Given ε > 0, there exists positive constants c′1, c
′
2 such

that,

1. If λ ≥ (1 + ε)Λfail, then Program 1 fails with probability
1− c′1 exp (−c′2|Rc|).

2. If λ ≤ (1− ε)Λsucc then,

• If EDmin ≤ (1 − ε) 1
λ , then Program 1 fails with

probability 1− c′1 exp (−c′2nmin).

• If EDmin ≥ (1+ ε) 1
λ , then Program 1 succeeds with

probability 1− c′1n2 exp (−c′2nmin).

We see that the minimum effective density EDmin,Λsucc
and Λfail play a fundamental role in determining the success
of Program 1. Theorem 1 gives a criteria for the inherent
success of Program 1, whereas Theorem 2 characterizes the
conditions for the success of Program 1 as a function of the
regularization parameter λ. We illustrate these results in Fig-
ures 1a and 1b.

3.1. Sharp Performance Bounds

From our forward and converse results, we see that there is a

gap between Λfail and Λsucc. The gap is Λfail
Λsucc

=
4
√
q(1−q)n+γsucc√
q(n−γfail)

times. In the small cluster regime where max
1≤i≤K

ni = o(n)

and
∑K
i=1 n

2
i = o(n2), the ratio Λfail

Λsucc
takes an extremely sim-

ple form as we have γfail � n and γsucc �
√
n. In particular,

Λfail
Λsucc

= 4
√

1− q+ o(1), which is at most 4 times in the worst
case.

nmin (Minimum cluster size)

p
1
=

p
2
=

p
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Fig. 2: Simulation results showing the region of success (white region)
and failure (black region) of Program 1 with λ = 0.99Λsucc. Also depicted
are the thresholds for success (solid red curve on the top-right) and failure
(dashed green curve on the bottom-left) predicted by Theorem 1.
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Fig. 3: Simulation results showing the region of success (white region)
and failure (black region) of Program 1 with λ = 2ED−1

min. Also depicted
are the thresholds for success (solid red curve on the top-right) and failure
(dashed green curve on the bottom-left) predicted by Theorem 2.

4. SIMULATIONS

We implement Program 1 using the inexact augmented La-
grangian multiplier method algorithm by Lin et al. [34]. We
note that this algorithm solves the program approximately.
Moreover, numerical imprecision prevents the output of the
algorithm from being strictly 1 or 0. Hence we round each
entry to 1 or 0 by comparing it with the mean of all entries
of the output. In other words, if an entry is greater than the
overall mean, we round it to 1 and to 0 otherwise. We declare
success if the number of entries that are wrong in the rounded
output compared to L0 (recall from (3)) is less than 0.1%.

We consider the set up with n = 200 nodes and two clus-
ters of equal sizes, n1 = n2. We vary the cluster sizes from
10 to 100 in steps of 10. We fix q = 0.1 and vary the proba-
bility of edge inside clusters p1 = p2 = p from 0.6 to 0.95 in
steps of 0.05. We run the experiments 20 times and average
over the outcomes. In the first set of experiments, we run the
program with λ = 0.99Λsucc which ensures that λ < Λsucc.



Figure 2 shows the region of success (white region) and fail-
ure (black region) for this experiment. From Theorem 1, we
expect the program to succeed when EDmin > Λ−1

succ, which
is the region above the solid red curve in Figure 2, and fail
when EDmin < Λ−1

fail , which is the region below the dashed
green curve in Figure 2.

In the second set of experiments, we run the program with
λ = 2

EDmin
. This ensures that EDmin >

1
λ . Figure 3 shows

the region of success (white region) and failure (black region)
for this experiment. From Theorem 2, we expect the program
to succeed when λ < Λsucc which is the region above the
solid red curve in Figure 3 and fail when λ > Λfail which is
the region below the dashed green curve in Figure 3.

We see that the transition indeed happens between the
solid red curve and the dashed green curve in both Figure 2
and Figure 3 as predicted by Theorem 1 and Theorem 2 re-
spectively.

5. DISCUSSION AND CONCLUSION

We provided sharp analysis of Program 1 which is commonly
used to identify clusters in a graph and more generally, to
decompose a matrix into low-rank and sparse components.
We believe, our technique can be extended to tightly analyze
variants of this approach. As a future work, we are looking
at the extensions of Problem 1, where the adjacency matrix
A is partially observed, and also modifying Program 1 for
clustering weighted graphs, where the adjacency matrix A
with {0, 1}-entries is replaced by a similarity matrix with real
entries.
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7. PROOFS FOR SUCCESS

The theorems in Section 3 provide the conditions under which
Program 1 succeeds or fails. In this section, we provide the
proofs of the success results, i.e., the last statements of Theo-
rems 1 and 2. The failure results will be the topic of Section 8.
Notation: Before we proceed, we need some additional no-
tation. 1n will denote a vector in Rn with all ones. Comple-
ment of a set S will be denoted by Sc. LetRi,j = Ci×Cj for
1 ≤ i, j ≤ K + 1. One can see that {Ri,j} divides [n] × [n]
into (K + 1)2 disjoint regions similar to a grid which is il-
lustrated in Figure 4. Thus, Ri,i is the region induced by i’th
cluster for any i ≤ K.

LetA ⊆ [n]× [n] be the set of nonzero coordinates of A.
Then the sets,

1. A ∩R corresponds to the edges inside the clusters.

2. Ac ∩ R corresponds to the missing edges inside the
clusters.

3. A∩Rc corresponds to the set of edges outside the clus-
ters, which should be ideally not present.

Let c and d be positive integers. Consider a matrix, X ∈
Rc×d. Let β be a subset of [c]× [d]. Then, let Xβ denote the
matrix induced by the entries of X on β i.e.,

(Xβ)i,j =

{
Xi,j if (i, j) ∈ β
0 otherwise .

In other words, Xβ is a matrix whose entries match those of
X in the positions (i, j) ∈ β and zero otherwise. For exam-
ple, 1n×nA = A. Given a matrix A, sum(A) will denote the
sum of all entries of A. Finally, we introduce the following
parameter which will be useful for the subsequent analysis.
This parameter can be seen as a measure of distinctness of the
“worst” cluster from the “background noise”. Here, by back-
ground noise we mean the edges over Rc. Given q, {pi}Ki=1,
let,

DA =
1

2
min{1− 2q, {2pi − 1− 1

λni

K

i=1

} (4)

=
1

2
min{1− 2q,

EDi − λ−1

ni
}

For our proofs, we will make use of the following Big
O notation. f(n) = Ω(n) will mean there exists a posi-
tive constant c such that for sufficiently large n, f(n) ≥ cn.
f(n) = O(n) will mean there exists a positive constant c such
that for sufficiently large n, f(n) ≤ cn.

Observe that the success condition of Theorem 1 is a spe-
cial case of that of Theorem 2. Considering Theorem 1, sup-
pose EDmin ≥ (1 + ε)Λ−1

succ and λ = (1 − δ)Λsucc where
δ > 0 is to be determined. Choose δ so that 1 − δ = (1 +
ε)−1/2. Now, considering Theorem 2, we already have, λ ≤
(1 − δ)Λsucc and we also satisfy the second requirement as
we have EDmin ≥ (1 + ε)Λ−1

succ = (1 + ε)(1 − δ)λ−1 =√
1 + ελ−1. Consequently, we will only prove Theorem 2

and we will assume that there exists a constant ε > 0 such
that,

λ ≤ (1− ε)Λsucc (5)

EDmin ≥ (1 + ε)λ−1

This implies that DA is lower bounded by a positive con-
stant. The reason is pmin > 1/2 hence 2pi − 1 > 0 and we
additionally have that 2pi − 1 ≥ (1 + ε) 1

λni
. Together, these

ensure, 2pi − 1− 1
λni
≥ ε

1+ε (2pi − 1).



7.1. Conditions for Success

In order to show that (L0,S0) is the unique optimal solution
to the program (1), we need to prove that the objective func-
tion strictly increases for any perturbation, i.e.,

(‖L0 + EL‖? + λ ‖S0 + ES‖1)− (‖L0‖? + λ ‖S0‖1) > 0,
(6)

for all feasible perturbations (EL,ES).
For the following discussion, we will use a slightly abused

notation where we denote a subgradient of a norm ‖ ·‖∗ at the
point x by ∂‖x‖∗. In the standard notation, ∂‖x‖∗ denotes
the set of all subgradients, i.e., the subdifferential.

We can lower bound the LHS of the equation (6) using the
subgradients as follows,

(‖L0 + EL‖?+λ ‖S0 + ES‖1)−
(
‖L0‖? + λ ‖S0‖1

)
≥ 〈∂‖L0‖?,EL〉+ λ〈∂‖S0‖1,ES〉, (7)

where ∂‖L0‖? and ∂‖S0‖1 are subgradients of nuclear norm
and `1-norm respectively at the points

(
L0,S0

)
.

To make use of (7), it is crucial to choose good subgra-
dients. Our efforts will now focus on construction of such
subgradients.

7.1.1. Subgradient construction

Write L0 = UΛUT , where Λ = diag{n1, n2, . . . , nK} and
U = [u1 . . . uK ] ∈ Rn×K , with

ul,i =

{
1√
nl

if i ∈ Cl
0 otherwise.

Then the subgradient ∂‖L0‖? is of the form UUT + W
such that W ∈ MU := {X : XU = UTX = 0, ‖X‖ ≤ 1}.
The subgradient ∂‖S0‖1 is of the form sign(S0) + Q where
Qi,j = 0 if S0

i,j 6= 0 and ‖Q‖∞ ≤ 1. We note that since L +

S = A, EL = −ES . Note that sign(S0) = 1
n×n
A∩Rc−1n×nAc∩R.

Choosing Q = 1
n×n
A∩R − 1

n×n
Ac∩Rc , we get,

‖L0+EL‖? + λ ‖S0 + ES‖1 − (‖L0‖? + λ ‖S0‖1)

≥ 〈∂‖L0‖?,EL〉+ λ〈∂‖S0‖1,ES〉
= 〈UUT + W,EL〉+ λ〈sign(S0) + Q,ES〉

=

K∑
i=1

1

ni
sum(ERi,i) + λ

(
sum(ELAc)− sum(ELA)

)
︸ ︷︷ ︸

:=g(EL)

+
〈
W,EL

〉
. (8)

Define,

g(EL) :=

K∑
i=1

1

ni
sum(ELRi,i

) + λ
(
sum(ELAc)− sum(ELA)

)
.

(9)

Also, define f
(
EL,W

)
:= g

(
EL
)
+
〈
W,EL

〉
. Our aim

is to show that for all feasible perturbations EL, there exists
W such that,

f
(
EL,W

)
= g(EL) +

〈
W,EL

〉
> 0. (10)

Note that g(EL) does not depend on W.

Lemma 1. Given EL, assume there exists W ∈ MU with
‖W‖ < 1 such that f(EL,W) ≥ 0. Then at least one of the
followings holds:

• There exists W∗ ∈MU with ‖W∗‖ ≤ 1 and
f(EL,W∗) > 0.

• For all W ∈MU,
〈
EL,W

〉
= 0.

Proof. Let c = 1 − ‖W‖. Assume
〈
EL,W′〉 6= 0 for some

W′ ∈ MU. If
〈
EL,W′〉 > 0, choose W∗ = W + cW′.

Otherwise, choose W∗ = W − cW′. Since ‖W′‖ ≤ 1, we
have, ‖W∗‖ ≤ 1 and W∗ ∈MU. Consequently,

f(EL,W∗) = f(EL,W) + |
〈
EL, cW′〉 |

> f(EL,W) ≥ 0 (11)

Notice that, for all W ∈ MU,
〈
EL,W

〉
= 0 is equiv-

alent to EL ∈ M⊥U which is the orthogonal complement of
MU in Rn×n.M⊥U has the following characterization:

M⊥U = {X ∈ Rn×n : X = UMT + NUT

for some M,N ∈ Rn×K}. (12)

Now we have broken down our aim into two steps.

1. Construct W ∈ MU with ‖W‖ < 1, such that
f(EL,W) ≥ 0 for all feasible perturbations EL.

2. For all non-zero feasible EL ∈ M⊥U, show that
g(EL) > 0.

As a first step, in Section 7.2, we will argue that, under
certain conditions, there exists a W ∈ MU with ‖W‖ < 1
such that with high probability, f(EL,W) ≥ 0 for all feasi-
ble EL. This W is called the dual certificate. Secondly, in
Section 7.3, we will show that, under certain conditions, for
all EL ∈ M⊥U with high probability, g(EL) > 0. Finally,
combining these two arguments, and using Lemma 1 we will
conclude that (L0,S0) is the unique optimal with high prob-
ability.

7.2. Showing existence of the dual certificate

Recall that

f(EL,W) =

K∑
i=1

1

ni
sum(ELRi,i

) +
〈
EL,W

〉
+λ
(
sum

(
ELAc

)
− sum

(
ELA
))

W will be constructed from the candidate W0, which is
given as follows.



7.2.1. Candidate W0

Based on Program 1, we propose the following,

W0 =

K∑
i=1

ci1
n×n
Ri,i

+ c1n×nRc + λ
(
1
n×n
A − 1n×nAc

)
,

where {ci}Ki=1, c are real numbers to be determined.
We now have to find a bound on the spectral norm of W0.

Note that W0 is a random matrix where randomness is due
to A. In order to ensure a small spectral norm, we will set its
expectation to 0, i.e., we will choose c, {ci}′s to ensure that
E[W0] = 0.

Following from the Stochastic Block Model 1, the expec-
tation of an entry of W0 on Ri,i (region corresponding to
cluster i) andRc (region outside the clusters) is ci+λ(2pi−1)
and c+ λ(2q − 1) respectively. Hence, we set,

ci = −λ(2pi − 1) and c = −λ(2q − 1),

With these, choices, the candidate W0 and f(EL,W0)
take the following forms,

W0 = 2λ

[
K∑
i=1

(1− pi) 1n×nRi,i∩A − pi 1
n×n
Ri,i∩Ac

]
+2λ

[
(1− q) 1n×nRc∩A − q 1

n×n
Rc∩Ac

]
(13)

f(EL,W0) = λ
[
(1− 2q) sum(ELRc)

]
−λ

[
K∑
i=1

(
2pi − 1− 1

λni

)
sum(ELRi,i

)

]
(14)

From L0 and (2), it follows that,

ELRc is (entrywise) nonnegative. (15)

ELR is (entrywise) nonpositive.

Thus, sum(ELRc) ≤ 0 and sum(ELRi,i
) ≥ 0. When

λ(2pi − 1) − 1
ni
≥ 0 and λ(2q − 1) ≤ 0; we will have

f(EL,W0) ≥ 0 for all feasible EL. This indeed holds due
to the assumptions of Theorem 1 (see (4)), as we assumed
2pi − 1 > 1

λni
for i = 1, 2 · · · ,K and 1 > 2q.

We will now proceed to find a tight bound on the spectral
norm of W0. Let us define the zero-mean Bernoulli distribu-
tion Bern0(α) as follows. X ∼ Bern0(α) if,

X =

{
1− α w.p. α

−α w.p. 1− α

Theorem 3. Assume A ∈ Rn×n obeys the stochastic block
model (1) and let M ∈ Rn×n. Let entries of M be as follows.

Mi,j ∼

{
Bern0(pk) if (i, j) ∈ Rk,k
Bern0(q) if (i, j) ∈ Rc

Then, for a constant ε′ (to be determined) each of the fol-
lowing holds with probability 1− exp(−Ω(n)).

• ‖M‖ ≤ (1 + ε′)
√
n.

• ‖M‖ ≤ 2
√
q(1− q)

√
n

+ max
i≤K

2
√
q(1− q) + pi(1− pi)

√
ni + ε′

√
n.

• Assume max
1≤i≤K

ni = o(n). Then, for sufficiently large
n,

‖M‖ ≤ (2
√
q(1− q) + ε′)

√
n.

Proof. The entries of M are i.i.d. with maximum variance of
1/4. Hence, the first statement follows directly from [35].

For the second statement, let,

M1(i, j) =

{
M(i, j) if i, j ∈ Rc

Bern0(q) else

Also let M2 = M −M1. Observe that, M1 has i.i.d.
Bern0(q) entries. From standard results on random matrix
theory, it follows that,

‖M1‖ ≤ (2
√
q(1− q) + ε′)

√
n

with the desired probability.
For M2, first observe that over Ri,i M2 has i.i.d. entries

with variance q(1− q) + pi(1− pi). This similarly gives,

‖M2,Ri,i‖ ≤ 2
√
q(1− q) + pi(1− pi)

√
ni + ε′

√
n

Now, observing, ‖M2‖ = sup
i≤K

‖M2,Ri,i
‖ and using a

union bound over i ≤ K we have,

‖M2‖ ≤ max
i≤K

2
√
q(1− q) + pi(1− pi)

√
ni + ε′

√
n

Finally, we use the triangle inequality ‖M‖ ≤ ‖M1‖ +
‖M2‖ to conclude.

The following lemma gives a bound on ‖W0‖.

Lemma 2. Recall that, W0 is a random matrix; where ran-
domness is on the stochastic block model A and it is given
by,

W0 = 2λ

K∑
i=1

[
(1− pi)1n×nA∩Ri,i

− pi1n×nAc∩Ri,i

]
+ 2λ

[
(1− q)1n×nA∩Rc − q1n×nAc∩Rc

]
(16)

Then, for any ε′ > 0, with probability 1 − exp (−Ω(n)),
we have

‖W0‖ ≤ 4λ
√
q(1− q)

√
n

+ max
i≤K

4λ
√
q(1− q) + pi(1− pi)

√
ni + ε′λ

√
n

≤ λΛ−1
succ + ε′λ

√
n



Further, if max
1≤i≤K

ni = o(n). Then, for sufficiently large n,

with the same probability,

‖W0‖ ≤ 4λ
√
q(1− q)n+ ε′λ

√
n.

Proof. 1
2λW0 is a random matrix whose entries are i.i.d. and

distributed as Bern0(pi) onRi,i and Bern0(q) onRc. Conse-
quently, using Theorem 3 and recalling the definition of Λsucc
we obtain the result.

Lemma 2 verifies that asymptotically with high proba-
bility we can make ‖W0‖ < 1 as long as λ is sufficiently
small. However, W0 itself is not sufficient for construction
of the desired W, since we do not have any guarantee that
W0 ∈ MU. In order to achieve this, we will correct W0 by
projecting it ontoMU. Following lemma suggests that W0

does not change much by such a correction.

7.2.2. Correcting the candidate W0

Lemma 3. W0 is as described previously in (16). Let WH

be the projection of W0 onMU. Then

• ‖WH‖ ≤ ‖W0‖

• For any ε′′ > 0 (constant to be determined), with prob-
ability
1− 6n2 exp(−2ε′′2nmin) we have

‖W0 −WH‖∞ ≤ 3λε′′

Proof. Choose arbitrary vectors {ui}ni=K+1 to make {ui}ni=1

an orthonormal basis in Rn. Call U2 = [uK+1 . . . un] and
P = UUT , P2 = U2U

T
2 . Now notice that for any matrix

X ∈ Rn×n, P2XP2 is in MU since UTU2 = 0. Let I
denote the identity matrix. Then,

X−P2XP2 = X− (I−P)X(I−P)

= PX + XP−PXP ∈M⊥U (17)

Hence, P2XP2 is the orthogonal projection on MU.
Clearly,

‖WH‖ = ‖P2W0P2‖ ≤ ‖P2‖2‖W0‖ ≤ ‖W0‖

For analysis of ‖W0−WH‖∞ we can consider terms on
the right hand side of (17) separately as we have:

‖W0 −WH‖∞ ≤ ‖PW0‖∞ + ‖W0P‖∞ + ‖PW0P‖∞

Clearly P =
∑K
i=1

1
ni
1
n×n
Ri,i

. Then, each entry of 1
λPW0

is either a summation of ni i.i.d. Bern0(pi) or Bern0(q) ran-
dom variables scaled by n−1

i for some i ≤ K or 0. Hence any
c, d ∈ [n] and ε′′ > 0

P[|(PW0)c,d| ≥ λε′′] ≤ 2 exp(−2ε′′2nmin)

Same (or better) bounds holds for entries of W0P and
PW0P. Then a union bound over all entries of the three
matrices will give with probability 1−6n2 exp(−2ε′′2nmin),
we have ‖W0 −WH‖∞ ≤ 3λε′′.

Recall that,
Let γsucc := max

1≤i≤K
4
√

(q(1− q) + pi(1− pi))ni, and

Λsucc := 1

4
√
q(1−q)n+γsucc

.

We can summarize our discussion so far in the following
lemma,

Lemma 4. W0 is as described previously in (13). Choose
W to be projection of W0 onMU. Also suppose λ ≤ (1 −
δ)Λsucc. Then, with probability 1 − 6n2 exp(−Ω(nmin)) −
4 exp(−Ω(n)) we have,

• ‖W‖ < 1

• For all feasible EL, f(EL,W) ≥ 0.

Proof. To begin with, observe that Λ−1
succ is Ω(

√
n). Since

λ ≤ Λsucc, λ
√
n = O(1). Consequently, using λΛ−1

succ <
1 and applying Lemma 2, and choosing a sufficiently small
ε′ > 0, we conclude with,

‖W‖ ≤ ‖W0‖ < 1

with probability 1 − exp(−Ω(n)) where the constant in the
exponent depends on the constant ε′ > 0.

Next, from Lemma 3 with probability 1−6n2 exp(− 2
9ε
′′2nmin)

we have ‖W0 −W‖∞ ≤ λε′′. Then based on (14) for all
EL, we have that,

f(EL,W) = f(EL,W0)−
〈
W0 −W,EL

〉
≥ f(EL,W0)− λε′′

(
sum(ELR)− sum(ELRc)

)
= λ

[
(1− 2q − ε′′)sum(ELRc)

]
−λ

K∑
i=1

[
(2pi − 1− 1

λni
− ε′′)sum(ELRi,i

)

]
≥ 0

where we chose ε′′ to be a sufficiently small constant. In par-
ticular, we set ε′′ < DA, i.e., set ε′′ < 1 − 2q and ε′′ <
2pi − 1− 1

λni
for all i ≤ K.

Hence, by using a union bound W satisfies both of the
desired conditions.

Summary so far: Combining the last lemma with
Lemma 1, with high probability, either there exists a dual
vector W∗ which ensures f(EL,W∗) > 0 or EL ∈ M⊥U. If
former, we are done. Hence, we need to focus on the latter
case and show that for all perturbations EL ∈ M⊥U, the ob-
jective will strictly increase at (L0,S0) with high probability.



7.3. Solving for EL ∈M⊥U case

Recall that,

g
(
EL
)

=

K∑
i=1

1

ni
sum(ERi,i) + λ

(
sum(ELAc)− sum(ELA)

)
Let us define,

g1(X) :=

K∑
i=1

1

ni
sum(XRi,i

),

g2(X) := sum(XAc)− sum(XA),

so that, g (X) = g1(X)+λg2(X). Also let V = [v1 . . . vK ]
where vi =

√
niui. Thus, V is basically obtained by, nor-

malizing columns of U to make its nonzero entries 1. Assume
EL ∈M⊥U. Then, by definition ofM⊥U, we can write,

EL = VMT + NVT .

Let mi,ni denote i’th columns of M,N respectively.
From L0 and (2) it follows that

ELRc is (entrywise) nonnegative

ELR is (entrywise) nonpositive

Now, we list some simple observations regarding structure of
EL. We can write

EL =

K∑
i=1

(vim
T
i + niv

T
i ) =

K+1∑
i=1

K+1∑
j=1

ELRi,j
(18)

Notice that only two components : vimT
i and njv

T
j , con-

tribute to the term ELRi,j
.

Let {ai,j}ni
j=1 be an (arbitrary) indexing of elements of Ci

i.e. Ci = {ai,1, . . . , ai,ni
}. For a vector z ∈ Rn, let zi ∈ Rni

denote the vector induced by entries of z in Ci. Basically, for
any 1 ≤ j ≤ ni, zij = zai,j . Also, let Ei,j ∈ Rni×nj which
is EL induced by entries onRi,j .

In other words,

Ei,jc,d = ELai,c,aj,d for all (i, j) ∈ Ci × Cj and

all 1 ≤ c ≤ ni, 1 ≤ d ≤ nj

Basically, Ei,j is same as ELRi,j
when we get rid of trivial

zero rows and zero columns. Then

Ei,j = 1
nimj

i

T
+ nij1

njT (19)

Clearly, given {Ei,j}1≤i,j≤n, EL is uniquely determined.
Now, assume we fix sum(Ei,j) for all i, j and we would like
to find the worst EL subject to these constraints. Variables in

such an optimization are mi,ni. Basically we are interested
in,

min g(EL) (20)
subject to

sum(Ei,j) = ci,j for all i, j

Ei,j

{
nonnegative if i 6= j

nonpositive if i = j
(21)

where {ci,j} are constants. Constraint (21) follows from (15).
Remark: For the special case of i = j = K + 1, notice that
Ei,j = 0.

In (20), g1(EL) is fixed and is equal to
∑K
i=1

1
ni
ci,i. Con-

sequently, we just need to do the optimization with the objec-
tive g2(EL) = sum(ELAc)− sum(ELA).

Let βi,j ⊆ [ni] × [nj ] be a set of coordinates defined as
follows. For any (c, d) ∈ [ni]× [nj ]

(c, d) ∈ βi,j iff (ai,c, aj,d) ∈ A

For (i1, j1) 6= (i2, j2), (mj1
i1
,ni1j1) and (mj2

i2
,ni2j2) are in-

dependent variables. Consequently, due to (19), we can par-
tition problem (20) into the following smaller disjoint prob-
lems.

min
mj

i ,n
i
j

sum(Ei,jβc
i,j

)− sum(Ei,jβi,j
) (22)

subject to

sum(Ei,j) = ci,j

Ei,j is

{
nonnegative if i 6= j

nonpositive if i = j

Then, we can solve these problems locally (for each i, j)
to finally obtain,

g2(EL,∗) =
∑
i,j

sum(Ei,j,∗βc
i,j

)−
∑
i,j

sum(Ei,j,∗βi,j
)

to find the overall result of problem (20), where ∗ denotes the
optimal solutions in problems (20) and (22). The following
lemma will be useful for analysis of these local optimizations.

Lemma 5. Let a ∈ Rc, b ∈ Rd and X = 1
cbT + a1d

T
be

variables and C0 ≥ 0 be a constant. Also let β ⊆ [c] × [d].
Consider the following optimization problem

min
a,b

sum(Xβc)− sum(Xβ)

subject to

Xi,j ≥ 0 for all i, j

sum(X) = C0

For this problem there exists a (entrywise) nonnegative
minimizer (a0,b0).



Proof. Let xi denotes i’th entry of vector x. Assume
(a∗,b∗) is a minimizer. Without loss of generality assume
b∗1 = mini,j{a∗i ,b∗j}. If b∗1 ≥ 0 we are done. Otherwise,
since Xi,j ≥ 0 we have a∗i ≥ −b∗1 for all i ≤ c. Then set
a0 = a∗ + 1

cb∗1 and b0 = b∗ − 1
db∗1. Clearly, (a0,b0) is

nonnegative. On the other hand, we have:

X∗ = 1
cb∗T + a∗1d

T
= 1

cb0T + a0
1
dT = X0,

which implies,

sum(X∗β)− sum(X∗βc) = sum(X0
β)− sum(X0

βc)

= optimal value

Lemma 6. A direct consequence of Lemma 5 is the fact that
in the local optimizations (22), Without loss of generality, we
can assume (mj

i ,n
i
j) entrywise nonnegative whenever i 6= j

and entrywise nonpositive when i = j. This follows from the
structure of Ei,j given in (19) and (15).

The following lemma will help us characterize the rela-
tionship between sum(Ei,j) and sum(Ei,jβc

i,j
).

Lemma 7. Let β be a random set generated by choosing el-
ements of [c] × [d] indecently with probability 0 ≤ r ≤ 1.
Then for any ε′ > 0 with probability 1 − d exp(−2ε′2c) for
all nonzero and entrywise nonnegative a ∈ Rd we’ll have:

sum(Xβ) > (r − ε′)sum(X) (23)

where X = 1
caT . Similarly, with the same probability, for

all such a, we’ll have sum(Xβ) < (r + ε′)sum(X)

Proof. We’ll only prove the first statement (23) as the proofs
are identical. For each i ≤ d, ai occurs exactly c times in X
as i’th column of X is 1cai. By using a Chernoff bound, we
can estimate the number of coordinates of i’th column which
are element of β (call this number Ci) as we can view this
number as a sum of c i.i.d. Bernoulli(r) random variables.
Then

P(Ci ≤ c(r − ε′)) ≤ exp(−2ε′2c)

Now, we can use a union bound over all columns to make
sure for all i, Ci > c(r − ε′)

P(Ci > c(r − ε′) for all i ≤ d) ≥ 1− d exp(−2ε′2c)

On the other hand if each Ci > c(r − ε′) then for any
nonnegative a 6= 0,

sum(Xβ) =
∑

(i,j)∈β

Xi,j =

d∑
i=

Ciai

> c(r − ε′)
d∑
i=1

ai

= (r − ε′)sum(X)

Using Lemma 7, we can calculate a lower bound for
g(EL) with high probability as long as the cluster sizes are
sufficiently large. Due to (18) and the linearity of g(EL),
we can focus on contributions due to specific clusters i.e.
vim

T
i + niv

T
i for the i’th cluster. We additionally know

the simple structure of mi,ni from Lemma 6. In particu-
lar, subvectors mi

i and nii of mi,ni can be assumed to be
nonpositive and rest of the entries are nonnegative.

Lemma 8. Assume, l ≤ K, DA > 0. Then, with probability
1−n exp(−2D2

A(nl−1)), we have g(vlm
T
l ) ≥ 0 for all ml.

Also, if ml 6= 0 then inequality is strict.

Proof. Recall that ml satisfies mi
l is nonpositive/nonnegative

when i = l/i 6= l for all i. Call Xi = 1
nlmi

l
T . We can write

g(vlm
T
l ) =

1

nl
sum(Xl) +

K∑
i=1

λh(Xi, βcl,i)

where h(Xi, βcl,i) = sum(Xi
βc
l,i

) − sum(Xi
βl,i

). Now as-
sume i 6= l. Using Lemma 7 and the fact that βl,i is a ran-
domly generated subset (with parameter q), with probability
1− ni exp(−2ε′2nl), for all Xi, we have,

h(Xi, βcl,i) ≥ (1− q − ε′)sum(Xi)− (q + ε′)sum(Xi)

= (1− 2q − 2ε′)sum(Xi)

where inequality is strict if Xi 6= 0. Similarly, when i = l
with probability at least 1− nl exp(−2ε′2(nl − 1)), we have,

1

λnl
sum(Xl) + h(Xl, βcl,l) ≥ (24)(

1− pl + ε′ +
1

λnl

)
sum(Xl)− (pl − ε′) sum(Xl)

= −
(

2pl − 1− 1

λnl
− 2ε′

)
sum(Xl)

Choosing ε′ = DA
2 and using the facts that 1 − 2q −

2DA ≥ 0, 2pl − 1 − 1
λnl
− 2DA ≥ 0 and using a union

bound, with probability 1− n exp(−2D2
A(nl − 1)), we have

g(vlm
T
l ) ≥ 0 and the inequality is strict when ml 6= 0 as at

least one of the Xi’s will be nonzero.

The following lemma immediately follows from Lemma
8 and summarizes the main result of the section.

Lemma 9. Let DA be as defined in (4) and assume DA > 0.
Then with probability 1 − 2nK exp(−2D2

A(nmin − 1)) we
have g(EL) > 0 for all nonzero feasible EL ∈M⊥U .

7.4. The Final Step

Lemma 10. Let pmin > 1
2 > q and G be a random graph

generated according to Model 1 with cluster sizes {ni}Ki=1.
If λ ≤ (1 − ε)Λsucc and EDmin = min

1≤i≤n
(2pi − 1)ni ≥

(1+ ε) 1
λ , then

(
L0,S0

)
is the unique optimal solution to Pro-

gram 1 with probability 1−exp(−Ω(n))−6n2 exp(−Ω(nmin)).



Proof. Based on Lemma 4 and Lemma 9, with probability
1− cn2 exp(−C (min{1− 2q, 2pmin − 1})2

nmin),

• There exists W ∈ MU with ‖W‖ < 1 such that for
all feasible EL, f(EL,W) ≥ 0.

• For all nonzero EL ∈M⊥U we have g(EL) > 0.

Consequently based on Lemma 1, (L0,S0) is the unique
optimal of Problem 1.

8. PROOFS FOR FAILURE

This section will provide the proofs of the failure results, i.e.,
the initial statements of Theorems 1 and 2. Let us start by
arguing that, failure result of Theorem 2 implies failure re-
sult of Theorem 1. To see this, assume Theorem 2 holds and
EDmin ≤ (1−ε)Λ−1

fail. Let ε′ be a constant to be determined.
If λ ≥ (1 + ε′)Λfail or EDmin ≤ (1− ε′)λ−1, due to Theo-
rem 2, Program 1 would fail and we can conclude. Suppose,
these are not the case, i.e., λ ≤ (1 + ε′)Λfail and EDmin ≥
(1 − ε′)λ−1. These would imply, EDmin ≥ 1−ε′

1+ε′ Λ
−1
fail. We

can end up with a contradiction by choosing ε′ small enough
to ensure 1−ε′

1+ε′ > 1 − ε. Consequntly, we will only prove
Theorem 2.

Lemma 11. Let pmin > 1
2 > q and G be a random

graph generated according to the Model 1 with cluster sizes
{ni}Ki=1.

1. If min
i
{ni (2pi − 1)} ≤ (1−ε) 1

λ , then
(
L0,S0

)
is not

an optimal solution to the Program 1 with probability
at least 1−K exp

(
−Ω(n2

min)
)
.

2. If λ ≥ (1+ε)
√

n

q(n2−
∑K

i=1 n
2
i )
, then

(
L0,S0

)
is not an

optimal solution to the Program 1 with high probability.

Proof. Proof of the first statement: Choose ε′ to be a con-
stant satisfying 2pi − 1 + ε′ < 1

λni
for some 1 ≤ i ≤ K.

This is indeed possible if the assumption of the Statement 1
of Lemma 11 holds. Lagrange for the Problem 1 can be writ-
ten as follows,

L (L,S;M,N) = ‖L‖? + λ‖S‖1 + trace(M(L− 1n×n))

− trace(NL). (25)

where M and N are dual variables corresponding to the
inequality constraints (2).

For L0 to be an optimal solution to (1), it has to satisfy
the KKT conditions. Therefore, the subgradient of (25) at L0

has to be 0, i.e.,

∂‖L0‖? + λ ∂‖A− L0‖1 + M0 −N0 = 0. (26)

where M0 and N0 are optimal dual variables.

Also, by complementary slackness,

trace(M0(L0 − 1n×n)) = 0, (27)

and
trace(N0L0) = 0. (28)

From (3), (27), and (28), we have (M0)R ≥ 0, (M0)Rc =
0, (N0)R = 0 and (N0)Rc ≥ 0. Hence (M0 −N0)R ≥ 0
and (M0 −N0)Rc ≤ 0.

Recall, L0 = UΛUT , where U = [u1 . . . uK ] ∈ Rn×K ,

ul,i =

{
1√
kl

if i ∈ Cl
0 else.

Also, recall that the subgradient ∂‖L0‖? is of the form
UUT + W such that W ∈ {X : XU = UTX = 0, ‖X‖ ≤
1}. The subgradient ∂‖S0‖1 is of the form sign(S0) + Q
where Qi,j = 0 if Si,j 6= 0 and ‖Q‖∞ ≤ 1.

From (26), we have,

UUT + W − λ
(
sign(S0) + Q

)
+ (M0 −N0) = 0. (29)

Consider the sum of the entires correspondingRi,i, i.e.,

sum
(
L0
Ri,i

)
︸ ︷︷ ︸

ni

−sum
(
λ
(
sign(S0) + Q

)
Ri,i

)
+ sum

(
(M0 −N0)Ri,i

)︸ ︷︷ ︸
≥0

= 0. (30)

By Bernstein’s inequality and using ‖Q‖∞ ≤ 1, with
probability 1− exp

(
−Ω(n2

i )
)

we have,

sum
(
sign(S0)

)
≤ −n2

i (1− pi −
ε′

2
) (31)

sum (Q) ≤ n2
i (pi +

ε′

2
). (32)

Thus,−sum
(
λ
(
sign(S0) + Q

)
Ri,i

)
≥ λn2

i (1−2pi−ε′)
and hence,

sum
(
L0
Ri,i

)
︸ ︷︷ ︸

ni

−sum
(
λ
(
sign(S0) + Q

)
Ri,i

)
+ sum

(
(M0 −N0

)
Ri,i

)︸ ︷︷ ︸
≥0

≥ ni + λn2
i (1− 2pi − ε′).

Now, choose i = arg min1≤j≤K ni(2pi − 1). From the
initial choice of ε′, we have that ni + λn2

i (1− 2pi − ε′) > 0.
Consequently, the equation (26) does not hold and hence L0

cannot be an optimal solution to the Program 1.
Proof of the second statement: Let ε′ be a constant to

be determined. Notice that
(
UUT

)
Rc = 0 and the entries of



−
(
sign(S0) + Q

)
and M0−N0 overRc∩A are nonpositive.

Hence from (29),

‖W‖2F ≥ ‖
(
UUT + W

)
Rc∩A ‖

2
F

≥ ‖λ
(
sign(S0) + Q

)
Rc∩A ‖

2
F . (33)

Recall that S0
Rc∩A 6= 0 and hence QRc∩A = 0. Fur-

ther, recall that by Model 1, each entry of A over Rc is
non-zero with probability q. Hence with probability at least
1 − exp (−Ω(|Rc|)), |Rc ∩ A| ≥ (q − ε′)(n2 −

∑K
i=1 n

2
i ).

Thus from (33) we have,

‖W‖2F ≥ λ2(q − ε′)(n2 −
K∑
i=1

n2
i ), (34)

Recall that ‖W‖ ≤ 1 should hold true for
(
L0,S0

)
to be

an optimal solution to the Program 1. Using the standard in-
equality n‖W‖2 ≥ ‖W‖2F and the equation (34), we find,

‖W‖ ≥ λ

√√√√ (q − ε′)
(
n2 −

∑K
i=1 n

2
i

)
n

.

So, if λ
√
q(1− ε′)

(
n2 −

∑K
i=1 n

2
i

)
/n > 1 then,

(
L0,S0

)
cannot be an optimal solution to Program 1. This is indeed
the case with the choice (1 − ε′)−1/2 < (1 + ε). This gives
us the Statement 2 of Lemma 11.


