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Abstract—We introduce the problem of learning a distribution
of user preferences over a set of items from noisy responses to
distance queries. Rather than aiming to learn the preferences of
each user, our goal is only to recover the overall distribution
of user preferences. We show that distribution recovery can
require just one response from each user. In contrast, learning
the preferences of each user would require multiple responses
from each user. Thus, learning preference distributions, rather
than individual preferences, may be more practical in many
applications. The preference distribution problem is formulated
on a discrete domain in which items (e.g., products) and users’
ideal preference points are located. We study both the noiseless
and noisy settings in one dimension and provide sufficient
conditions for identifiability of the underlying true distribution
as a function of the set of items used for queries. We establish
an upper bound on the total variation distance between the
true distribution and the distribution learned via constrained
least squares optimization problem for both noiseless and noisy
settings. While the one-dimensional setting we consider is simple,
our simulation results show that our proposed recovery technique
extends to multidimensional settings and graph structures.

Index Terms—Preference learning, distribution learning

I. INTRODUCTION

We introduce the problem of learning user preference
distribution from noisy distance queries from a large number
of users where each user only answers one query. Consider the
setup where each user has their own unknown ideal preference
point in u in domain D and can answer distance queries of
type Query(x,u) := dist(x,u) + ε, where x ∈ D is the
item that the user is being queried with, dist is an appropriate
distance metric in domain D and ε is noise. If each user could
be queried multiple times, then one could reasonably localize
the each user’s preference point by triangulating the distance
information from queries with items that are sufficiently spread
out. However, in many applications, it is not possible to have
such a rich number of observations per user. In such scenarios,
where the number of observations per user is restricted, e.g.,
one query per user, it is impossible to localize each user’s
preference point. Instead, our aim is to address the following
fundamental question – can we learn the distribution of the
user preference points over the population of users with only
one observation per user? (see Figure 1). Such a learned
preference distribution can then be used in downstream tasks,
e.g., testing if the user preference distribution is unimodal or

Fig. 1. Depiction (a) a set of unknown user locations (gray circles) and
items with known locations (pink stars); (b) Triangulation to localize a user,
e.g., user denoted by 1, requires two distance measurements per user; (c)
Distribution estimation instead of localization.

Fig. 2. Recovery of underlying user preference distribution via distance
measurements.

bimodal, identifying top items that are user favourites over
the population, learning the preference points for new users
using fewer queries using the learned distribution as prior. It
is a priori unclear whether learning the preference distribution
should be possible with only one query per user, i.e., whether
the underlying distribution is identifiable and, if so, under what
conditions on the set of query points can we expect this to
be identifiable? In particular, how many unique query items
would we need and what choices of the set of query items
enable learning in this setup?

Our contributions. We introduce the novel problem of
learning user preference distribution from noisy distance
measurements. We address the fundamental questions related



to identifiability and recovery for 1D discrete setting (see
Section II-A for details). We provide sufficient conditions for
identifiability (Theorem 1) and provide recovery guarantees
(Theorem 2) for both noiseless and noisy setups (Corollaries 1
and 2). We validate our results via simulations that demon-
strate the efficacy of proposed recovery approaches (see Sec-
tion IV). While the main focus of the paper is on the discrete
1D setting, we discuss extensions to 2D setup (Figure 9) and
graph structured settings (Figure 10) in Section VI.

Related works. A closely related problem is that of lo-
calization in networks and source localization which has
a rich line of literature [1]–[5] and more recently using
triplet comparison in preference learning [6]. Consider a large
number of tiny sensors in a geographical area with a few
distance measuring stations spread across the area that can
send beacons and receive noisy distance information from
the sensors. If there are at least three stations located in
generalized positions and each sensor is able to send distance
information for each of the stations, one can reasonably
triangulate each sensor, and depending on the noise levels,
multiple measurements might be required per sensor for better
localization. However, with a large number of tiny sensors, it
might not be possible to get to take multiple measurements per
sensor due to energy constraints. In scenarios where we are
only able to get one measurement per sensor, it is impossible
to localize each of them. Instead, in such cases, knowing the
density of the sensors in the geographical area might suffice
to test whether it matches with a target distribution. User
preference or ideal point learning has been well studied in
the preference learning and ranking literature [7]–[14] when
each user is queried multiple times with comparison to learn
their preference point or it is assumed that all users have
the same preference point and the queries get distributed.
While the model we study is simpler than those considered
in preference learning via pairwise comparison queries, we
believe the insights we develop by studying the restricted setup
build the foundations for understanding more general sensing
models.

The rest of the paper is organized as follows. In Section II,
we introduce the problem setup for the noiseless case and
provide identifiability and recovery guarantees. In Section III,
we discuss the noisy setting and provide identifiability and
recovery guarantees under noise. In Section IV, we present
numerical simulations that corroborate our recovery guaran-
tees. Section V provides proofs of the main results. We then
discuss extensions to 2D and continuous settings in Section VI
and we finally conclude in Section VII.

II. NOISELESS CASE: DISCRETE 1D SETTING

A. Problem Setup

We begin by considering a discrete 1D setting with user
preference points and item locations supported on m points,
[m] := {1, 2, . . . ,m}. Let p⋆ denote the unknown true
probability mass function (pmf) of the user preference points.
Let S ⊆ [m] denote the locations of items that are used in
queries, and these locations are known. Let N denote the

number of users. Each user with an unknown preference point
u ∈ [m] can be queried for distance from one item i ∈ S,
Query(i, u). In the noiseless setting, the answer provided is
dist(i, u) = |i − u|. In the noisy setting the answers are
dist(i, u) + ε = |i − u| + ε, where ε denotes the noise. We
defer the discussion of noisy setting to Section III and focus
on the noiseless setting here.

Let q denote the conditional probability of distances ob-
served given the items used in querying, qji = q(dist =
j|item = i) := Pr(dist = j|item = i). The conditional
probabilities q and the true underlying distribution of user
preferences p⋆ are linearly related via measurement matrix M
whose rows correspond to possible locations of the user for
the distance observed given the item queried in the noiseless
setting. For example, suppose we query a user with an item
located at position 4 and the observed distance is 3. In the
noiseless setting, we can infer that the user preference point
can be located in either positions 1 or 7. So the correspond-
ing row of M has 1’s at these possible locations and 0’s
everywhere else. The conditional distribution of observing
distance of 3 for a query with item 4 can be written as
q(dist = 3|item = 4) = p1 + p7. We have the following linear
system of equations that connect the conditional distributions
of distances given items, q, to the underlying true distribution
of user preference locations, p⋆,

q = Mp⋆. (1)

Since the rows of M correspond to the possible locations
of user preferences based on distance observed given item
queried, there can at most be two 1’s in each row and the rest
are 0’s. For each position i ∈ S, the number of corresponding
rows in M is given by the simple function

max{m− i+ 1, i}. (2)

So, the number of rows of the matrix M is given by K :=∑|S|
i=1 max{m− i+ 1, i}.

Example 1. As a concrete example, consider m = 5 and
S = {2, 3}. Then, the M corresponding to this setup is as
follows,

M =



0 1 0 0 0
1 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0
0 1 0 1 0
1 0 0 0 1


,

where first 4 rows correspond to q( . |item = 2) and
remaining 3 rows correspond to q( . |item = 3).

B. Identifiability

In this section we describe the conditions for identifiability
in the noiseless setting. Recall from (1) that the relationship
between the conditional probability of distances observed
given the items queried, q, and the true underlying pmf of
user preferences p⋆ is a linear system given by, q = Mp⋆,



where M ∈ RK×m, p ∈ Rm and q ∈ RK are defined with
respect to the setting in Section II-A. Clearly, if M has full
column rank, then the underlying distribution p⋆ is uniquely
determined as follows,

p⋆ = (MTM)−1MTq. (3)

In contrast, when M does not have full column rank, the
solution to the underlying distribution p is not unique and
therefore it is not identifiable. Therefore, we focus our atten-
tion on understanding when M is guaranteed to be full-rank
and hence the model is identifiable. We provide the following
sufficient condition for identifiability,

Theorem 1 (Identifiability, Noiseless case). Any query item
set S ⊆ [m] of size |S| = 2 is sufficient for the model in (1)
to be identifiable.

We note that for the item i = 1 (and similarly for i = m)
the corresponding rows of the matrix M has only one 1 in
each row and thus it generates all the standard basis vectors.
In contrast, an item at the mid-point only has ⌈m/2+1⌉ rows
corresponding to it in M. We further note that, the rows of
M corresponding to a single item i are independent. However,
it is not a priori clear how many items together lead to a
full column rank M and the above theorem establishes that,
surprisingly, any two items are sufficient. For details of the
proof, see Section V-A.

C. Recovery Guarantees

If we had access to the true conditional distribution q,
we could recover p⋆ via (3). Since we only have access
to observed samples, we have to work with an estimated
q̂. We propose using the following constrained least-squares
optimization problem to estimate p from observed samples,

minimize
p ∈ Rm

1

2
||Mp− q̂||22 (4a)

subject to 1Tp = 1, (4b)
pi ≥ 0, i = 1, . . . ,m. (4c)

When the problem is identifiable, i.e., when M is full rank,
the above convex optimization problem is guaranteed to have
a unique solution as the objective function is strongly convex.

Let psol denote the solution obtained by solving the op-
timization problem (4). We show the following recovery
guarantee in the noiseless setting under mild assumptions of
independence across individuals and with random item from
the subset S being chosen for each query,

Theorem 2. When the model in (1) is identifiable, with
probability at least 1− δ, the total variation distance between
the recovered distribution psol and the true distribution p⋆ is
bounded as follows,

TV(p∗,psol) ≤
√
mK cond(M, 1)

2
max

{√
20rmax

nq
,

√
25 log (3|S|/δ)

nq

}
(5)

where cond(M, 1) is the condition number of M with respect
to l1-norm, nq is the number of users per query, m is the
support size, rmax := maxi∈S{max{m−i+1, i}} and K :=∑

i∈S max{m− i+ 1, i} is the number of rows in M.

For a given support size m, the solution recovered by the
optimization problem in (4) is consistent under total variation
distance. The proof details are deferred to Section V-B.

III. NOISY CASE: DISCRETE 1D SETTING

In this section, we discuss the noise interference to the
setting given in Section II-A. In the noisy setting the answers
to Query(i, u) are dist(i, u) + ε = |i − u| + ε, where ε
denotes independent noise. So, in the noisy setting, instead
of true conditional distance distributions q, we have noisy
version qnoise. Therefore, we can write the conditional distance
distributions for item i in the noisy setting as follows,

qnoise(·|item = i) = fi(ε) ∗ q(·|item = i), i ∈ S, (6)

where ∗ represents convolution operator, fi(.) represents pmf
of the distribution of noise on distances for item at position
i and q(·|item = i) is the true conditional distribution of
distances for item i. We can represent convolution operation
using Toeplitz matrices as follows,

qnoise(·|item = i) = Tε
i q(·|item = i), i ∈ S, (7)

where Tε
i is the Toeplitz matrix capturing the noise ε for item

at i. Using (7), we can re-write the linear system in (1) for the
noisy setting as, qnoise = TεMp⋆, where Tε is the appropriate
concatenation of Toeplitz matrices of each item i. However,
convolution results in a different support than support of
f ′
is. To be more specific, since the noise interference causes

blurring, the items close to the end points need accounting for
spill overs. As an example, for a user with preference point at
location 1 when queried with item i = 1, the noise in distance
can only be positive since negative values are not possible.
Therefore, fi(.)’s should be determined differently for i’s close
to the boundary. Accordingly, we make modifications to the
Toeplitz matrices to be able to express noise effect on q with a
matrix multiplication (see Example (2)). Let T̃ε

i represent the
modified versions of Tε

i . Then, we can rewrite linear system
for the noisy setting as follows,

qnoise = T̃εMp⋆. (8)

A. Identifiability

The following proposition provides a sufficient condition
for identifiability in the noisy setting.

Corollary 1 (Identifiability, Noisy case). Under the noisy
model in (8), p⋆ is identifiable for any query item set S ⊆ [m]
of size |S| ≥ 2 when the noise matrix T̃ε is full rank.

The proof follows from that of Theorem 1 and full rankness
of T̃ε which together makes T̃εM invertible.

Example 2. Let us now take a look at some concrete exam-
ples of structures of matrix T̃ε

i by discussing an illustrative



example. Consider a case where m = 5 and S = {1, 2}
with the following discrete noise model for items i = 2, 3, 4,
f(0) = 1 − 2ϵ, f(−1) = f(1) = ϵ. For item i = 1, the
noise is modified as f(0) = 1− 2ϵ, f(1) = 2ϵ and for item
i = 5 as f(0) = 1 − 2ϵ, f(−1) = 2ϵ, to account for the
boundary effect. The corresponding Toeplitz-like matrices are
given below.

[T̃ε
1]5×5 =



1− 2ϵ ϵ 0 0 0

2ϵ 1− 2ϵ ϵ 0 0

0 ϵ 1− 2ϵ ϵ 0

0 0 ϵ 1− 2ϵ 2ϵ

0 0 0 ϵ 1− 2ϵ


.

[T̃ε
2]4×4 =


1− 2ϵ ϵ 0 0

2ϵ 1− 2ϵ ϵ 0

0 ϵ 1− 2ϵ 2ϵ

0 0 ϵ 1− 2ϵ

 .

Then, modified Toeplitz matrix T̃ε can be written as

T̃ε =

 T̃ε
1 05×4

04×5 T̃ε
2.

 .

Note that rank of T̃ε for this illustrative example is a function
of ϵ. Whereas T̃

1
6 satisfies full rank condition, T̃

1
3 does not

satisfy.

Remark 1. (Worst case error) The noise matrices T̃ε are not
always full rank. As a simple example for worst case scenario,
we consider a case where m = 5, S = 1 and all distance
values are equally possible. Here, T̃ε becomes 1

51[5×1]1[1×5],
which is clearly a rank one matrix.

B. Recovery Guarantees

We use the following modified optimization problem to es-
timate the underlying distribution of user preference locations,

minimize
p ∈ Rm

1

2
||T̃εMp− q̂noise||22 (9a)

subject to 1Tp = 1, (9b)
pi ≥ 0, i = 1, . . . ,m. (9c)

Similar to the noiseless setting, the above optimization prob-
lem has unique solution when the model is identifiable, i.e.,
when T̃ε

iM is full rank. The following corollary provides an
upper bound on the total variation error between the optimal
solution psol to the above optimization problem and the true
distribution p⋆ under mild assumptions of independence across
individuals and with random item from the subset S being
chosen for each query.

Corollary 2 (Recovery guarantee, Noisy case). When the
model in (8) is identifiable, with probability at least 1 − δ,

Fig. 3. True distributions used for simulations in the discrete setting for both
noiseless and noisy cases.

Fig. 4. Error in recovered distribtuions compared to the true distributions for
various underlying distributions for noiseless case in 1D discrete setting.

the total variation distance between the recovered distribution
psol and the true distribution p⋆ is bounded as follows,

TV(p∗,psol) ≤
√
mK

cond(M, 1)cond(T̃ε, 1)

2

×max

{√
20rmax

nq
,

√
25 log (3|S|/δ)

nq

}
,

where cond(M, 1) and cond(T̃ε, 1) denote the condition
numbers of the matrices M and T̃ε with respect to l1-
norm, n is the total number of users, m is the support
size, rmax := maxi∈S{max{m − i + 1, i}} and K :=∑

i∈S max{m− i+ 1, i} is the number of rows in M.

IV. SIMULATIONS

In this section we provide numerical simulations that show
the recovery of user preference distributions in 1D for both
discrete and continuous setups and for both noiseless and
noisy cases. We solve the constrained least square optimization
problems in (4) and (9) using exponential gradient descent. We
initialize the algorithm with uniform distribution except when
the true underlying distribution is uniform, in which case we
use a triangular-like distribution to initialize the algorithm. For
the learning rate, we use 0.5 for all scenarios and terminate
the iterations when either the maximum iterations of 104 or
the tolerance value, 10−10, is reached. All the simulations are
run on Matlab version R2018b [15].

A. Discrete 1D Setting

Let m = 27, that is, the support for the user preference
points and item locations are {1, 2, . . . , 27}. The query items
are in the set S = {12, 16} which gives an M with condition
number ≈ 5.03. We ran simulations for three different under-
lying discrete distributions: (a) uniform, (b) three spikes, and
(c) truncated Gaussian for user preference locations as shown



Fig. 5. Error in recovered distribtuions compared to the true distributions for
various underlying distributions for noisy case in 1D discrete setting.

in Figure 3. We vary the number of users from 100 to 10
million and repeat each setting 50 times.

1) Noiseless case: Figure 4 shows the l1-error between
recovered distributions and the true underlying distributions
for each of the cases in the noiseless setup.

2) Noisy case: We assume following noise model with
support size 3, f(0) = 2

3 , f(−1) = f(1) = 1
6 , and

construct corresponding Toeplitz-like matrix as described in
Section III-A. Figure 5 shows the l1-error (twice the total
variation distance) between recovered distributions and the true
underlying distributions for each of the cases.

B. Continuous 1D Setting

We also provide simulations for continuous underlying
distributions with user preference points and item locations
supported on interval of [−1, 1] for three different distributions
(a) uniform, (b) three spikes, and (c) truncated Gaussian for
user preference locations as shown in Figure 6. We choose 10

Fig. 6. True distributions used for simulations in the continuous setting for
both noiseless and noisy cases.

points uniformly at random from [−1, 1] for the query item
set S. We recover the underlying distribution by discretizing
the interval using 0.01 as bin width. We vary the number of
users from 100 to 107 on the log-scale and repeat each setting
50 times.

1) Noiseless case: Figure 7 shows the Wasserstein-1 error
(earth mover’s distance) between the recovered distribution
and the true underlying distribution for varying number of
users in the noiseless case for different underlying true distri-
butions.

2) Noisy case: Zero mean Gaussian noise with variance
0.012 is used as additive noise to the true distances to obtain
noisy distances as answers to distance queries. These noisy
answers are used to estimate q̂noise by rounding them to near-
est bin. We then construct corresponding Toeplitz-like noise
matrix and apply the optimization problem in (9) to recover the
discretized version of underlying distribution. Figure 8 shows

Fig. 7. Wasserstein-1 error (earth mover’s distance) between recovered
distribtuions and the true distributions for various underlying distributions
for noiseless case in 1D continuous setting.

Fig. 8. Wasserstein-1 error (earth mover’s distance) between recovered
distribtuions and the true distributions for various underlying distributions
for noisy case in 1D continuous setting.

the Wasserstein-1 error (Earth Mover’s Distance) between the
recovered distribution and the true underlying distribution for
varying number of users for the noisy setting for different
underlying true distributions.

V. PROOFS

In this section we provide proofs for the results presented
in Sections II and III.

A. Proof of Theorem 1

Proof. We suppose that Mi represents rows of M regarding
to item position i. Then, for any two item positions i and j,
without loss of generality, we assume i < j and i ≤ m

2 , where

M =

[
Mi

Mj

]
Step I: First we subtract column i + k from its symmetric

column i − k with respect to i for all k = 1, . . . , i − 1.
These operations generate the following subset of standard
basis vectors, {ei, ei+1 . . . em}, in the rows of Mi.

Step II: The target is to generate the remaining standard
basis vectors from rows of Mj to be able to conclude that
M is full rank. We subtract generated standard basis vectors,
{ei, ei+1 . . . em}’s, from corresponding rows of Mj to cancel
them out. We call M to this new matrix containing a subset
of standard basis vectors as its rows.

Now, we consider rows of M corresponding to same in-
dexed rows with Mj and call this submatrix M

j
. If we can

prove that the right of anti-diagonal is all zeros for matrix M
j
,

then we can generate {e1, e2 . . . ei−1} via straightforward row
operations and conclude that M is full column rank. The rest
of the proof focuses on verifying that the right of anti-diagonal
is all zeros for matrix M

j
.

Step III: We start by noting that M
j

has all zeros in columns
i to m, due to row operations in Step II. However, column



operations in Step I generate some nonzero values on the
latter version M

j
of Mj . If j ≥ 2i − 1, it is easy to see

that those emerging nonzero values are belong to the left of
M

j
’s anti-diagonal, since they result from subtracting column

i+ k from its symmetric smaller indexed column i− k for all
k = 1, . . . , i − 1, where column i + k has its only nonzero
value 1 on the anti-diagonal of Mj .

Otherwise, if j < 2i − 1, we note that the same rule as
above applies for emerging nonzero values originating from
subtracting column i + k from its symmetric column i − k
for k = 1, . . . , j − i. For remaining pairs corresponding to
k = j − i + 1, . . . , i − 1, we need to dig more to show that
target locations, i − k’s for k = j − i + 1, . . . , i − 1, are on
the left of anti-diagonal. We take any pair (i − k, i + k) for
k = j − i+ 1, . . . , i− 1, where column i+ k is the source of
nonzero entry on the target column i − k. Considering their
row index, we realize that anti-diagonal element in the same
row belongs to column j− (i+k− j) = 2j− i−k. Then, we
note that the same row’s anti-diagonal element has a bigger
column index than emerging nonzero value on column i− k,
i.e.,

2j − i− k > i− k, (10)

since j > i. Therefore, we can say that emerging nonzero
value on the column i− k is on the left of anti-diagonal.

B. Proof of Theorem 2

Recall that the optimization setting (4) is constrained least
square optimization where the constraint is the unit simplex.
Multiplication of M with each element in unit simplex defines
a closed convex set, which can be expressed as follows,

CM := conv(Me1, . . . ,Mem).

Clearly, if q̂ ∈ CM, then Mpsol = q̂ and psol = M†q̂,
where M† := (MTM)−1M⊤. Otherwise, if q̂ /∈ CM, we
note that Mpsol = ProjCM

(q̂), where the projection is under
l2-distance. Let q̂M := ProjCM

(q̂) for ease of notation.
Noting that p∗ = M†q and psol = M†q̂M, we first show

that the solution psol to (4) is close to the true p⋆ under l2-
norm with the following bound,

||p∗ − psol||2 = ||M†(q− q̂M)||2 ≤ ||M†||2||q− q̂M||2
(a)

≤ ||M†||2||q− q̂||2 ≤ ||M†||2||q− q̂||1,(11)

where the inequality (a) follows from the fact that projection
onto closed convex sets is contracting (Thm. 1.2.2. [16]).
Noting the fact that 2 TV(p⋆,psol) = ||p∗−psol||1, and using
the inequality between the l1- and l2−norms, we obtain the
following bound from (11),

||p∗ − psol||1 ≤
√
m||p∗ − psol||2 ≤

√
m||M†||2||q̂− q||2

≤
√
mK||M†||1||q̂− q||1 =

√
mK

cond(M, 1)

||M||1
||q̂− q||1.

Note that the term ||q̂−q||1 is the sum of l1- distances between
the empirical and the true conditional distributions of distances
for |S| items in the query set S. We then note that ||M||1 = |S|

and use the following bound on the l1-norm between empirical
distribution and the true distribution for discrete distributions
on finite support from Lemma 3 in [17],

Lemma 1. (Lemma 3 in [17]) Let p ∈ ∆k−1 be discrete
distribution with support size k. Let p̂ denote the empirical
estimate of this distribution from N i.i.d samples drawn from
p. Then, for all ε ≥

√
20k/N ,

Pr (||p̂− p||1 > ε) ≤ 3e−Nε2/25.

This completes the proof of Theorem 2.

C. Proof outline of Corollary 2

The matrix M in the optimization problem (4) is replaced
in (9) by T̃εM. The proof for recovery guarantee in the noisy
setting follows by similar steps to that of the noiseless setting
in Section V-B. Using the fact that, (T̃εM)† = M†(T̃ε)−1,
we can obtain the following bound,

||p∗ − psol||1 ≤
√
mK||M†(T̃ε)−1||1||q− q̂||1 (12)

Then, using sub-multiplicative property of induced matrix
norms, we obtain the following,

||p∗ − psol||1 ≤
√
mK||M†||1||(T̃ε)−1||1||q− q̂||1

=
√
mK

cond(M, 1)

||M||1
cond(T̃ε, 1)

||T̃ε||1
||q− q̂||1

We note that ||T̃ε||1 = 1 and ||M||1 = |S| by construction.
We then apply Lemma 1 for bounding ||q− q̂||1 which leads
to the result in Corollary 2.

VI. EXTENSIONS TO 2D SETTING AND GRAPHS

While we have focused on the 1D discrete settings so far,
our approach of the learning distribution of user preferences
over the population can be extended to higher dimensions and
to other underlying structures. In this section we discuss how
the ideas presented in the paper extends to 2D discrete setting
and to graph structured data. We also provide simulations to
demonstrate that our learning approach indeed extends beyond
the 1D discrete setting to these settings. The detailed analysis
to obtain theoretical guarantees of identifiability and recovery
guarantees for these extended settings are deferred to future
work.

A. 2D Setting

Consider a 2D grid of [m1,m2] := {1, 2, ...,m1} ×
{1, 2, ....,m2}. The problem of learning user preference dis-
tribution in 2D can be modelled in a similar way, where the
vectorized conditional probabilities q and the true underlying
distribution of user preferences p∗ are linearly related via
measurement matrix M, which is constructed in a similar
fashion to that of 1D with appropriate adjustments for 2D
geometry. The rows of the measurement matrix M can be
obtained by vectorizing the distance matrices. As an example,
consider a 4 × 4 grid. The row of M corresponding to



Fig. 9. Example of recovery of distribution of user locations for discrete 2D
setting. (a) Recovered and true distributions (with 106 users). (b) l1-error in
recovered distribution as function of number of users (noiseless setting).

q(dist = 2|item = (2, 2)) can be obtained by vectorizing the
following matrix:

m2,2 =


0 0 0 1
0 0 0 1
0 0 0 1
1 1 1 1

 .

Figure 9 shows the l1-error between the recovered distribution
and true distribution for an example 2D setting supported on
a 20× 20 grid (with 5 repetitions for each case).

We further note that, for continuous settings, one can
use the discretization approach as done in the simulation
section with appropriate binning as we demonstrated for the
1D setting in the simulations (Section IV-B). However, for
higher dimensions, such discretization based approach can
become computationally challenging as the grid size scales
exponentially with dimension. Another approach in continuous
case is to consider learning approaches based on kernel density
estimators. Detailed analysis of identifiability and recovery
guarantees for continuous set-up is out of the scope of this
paper and is deferred to future work.

B. Graph structures

Another setting where our approach extends to is learn-
ing the distribution of user preference locations over a
graph, where an underlying known graph structure determines
the connectivity across the users (sensors) and items (bea-
cons/anchors). Let A ∈ {0, 1}m×m denote the unweighted
and undirected adjacency matrix of a graph on m nodes. The
distances between two nodes in this case are measured as the
the shortest path between the two nodes. We can extend the
idea of setting up the linear system of equations relating the
conditional distributions of distances given the query nodes
and the true distribution of user locations on the nodes by

Fig. 10. Example of recovery of distribution of user locations on a graph via
distance measurements. (a) Known underlying graph structure on 6 nodes. (b)
Example of true and recovered distribution (with 106 users). (c) l1-error in
recovered distribution as function of number of users (noiseless setting).

constructing the measurement matrix M that depends on the
underlying graph A. As an example, consider a graph on 6
nodes shown in Figure 10. The rows of M corresponding to
q(.|item = node 3) and q(.|item = node 6) are given by:

M =



0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 1
0 0 0 0 0 1
0 0 0 1 0 0
0 0 1 0 1 0
1 1 0 0 0 0


.

Figure 10 shows the l1-error between the recovered distribu-
tion and true distribution for this example for a varying number
of users in the noiseless setting (with 50 repetitions for each
case).

The sufficient conditions for identifiability for distribution
over a graph depend on the structure of the underlying graph
and the locations of query nodes. The 1D discrete setting
considered in this paper can be seen as a line graph for which
any two nodes in the query set are sufficient for identifiability.
However, if the underlying graph is a complete graph, then
resolving the mass on individual nodes would not be possible
without using almost all the nodes for querying since all nodes
are distance 1 from each other.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduced the novel problem of learning
user preference distribution from noisy answers to distance
queries from a large number of users, where each user is lim-
ited to answering one query. We study both the noiseless and
noisy setups in 1D discrete setting and provide sufficient con-
ditions for identifiability. We also provide recovery guarantees



for learning the underlying distribution under total variation
distance via constrained least squares optimization problem.
While the setting considered is simple, the proposed technique
for recovering the distribution of preferences can be easily
extended to continuous settings, higher dimensions, and for
graph structures. A detailed study of identifiability guarantees
and analysis of recovery guarantees for these broader settings
is left to future work.
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